Obserwuj
Karl Rohe
Karl Rohe
Professor of Statistics, UW Madison
Zweryfikowany adres z stat.wisc.edu - Strona główna
Tytuł
Cytowane przez
Cytowane przez
Rok
Spectral clustering and the high-dimensional stochastic blockmodel
K Rohe, S Chatterjee, B Yu
11462011
Regularized spectral clustering under the degree-corrected stochastic blockmodel
T Qin, K Rohe
Advances in neural information processing systems 26, 2013
3872013
Fast and accurate detection of evolutionary shifts in Ornstein–Uhlenbeck models
M Khabbazian, R Kriebel, K Rohe, C Ané
Methods in Ecology and Evolution 7 (7), 811-824, 2016
2432016
Fantope projection and selection: A near-optimal convex relaxation of sparse PCA
VQ Vu, J Cho, J Lei, K Rohe
Advances in neural information processing systems 26, 2013
2152013
Covariate-assisted spectral clustering
N Binkiewicz, JT Vogelstein, K Rohe
Biometrika 104 (2), 361-377, 2017
2002017
Co-clustering directed graphs to discover asymmetries and directional communities
K Rohe, T Qin, B Yu
Proceedings of the National Academy of Sciences 113 (45), 12679-12684, 2016
184*2016
Attention and amplification in the hybrid media system: The composition and activity of Donald Trump’s Twitter following during the 2016 presidential election
Y Zhang, C Wells, S Wang, K Rohe
New Media & Society 20 (9), 3161-3182, 2018
1582018
Understanding regularized spectral clustering via graph conductance
Y Zhang, K Rohe
Advances in Neural Information Processing Systems 31, 2018
1232018
Preconditioning the lasso for sign consistency
J Jia, K Rohe
85*2015
Social media public opinion as flocks in a murmuration: Conceptualizing and measuring opinion expression on social media
Y Zhang, F Chen, K Rohe
Journal of Computer-Mediated Communication 27 (1), zmab021, 2022
562022
The lasso under poisson-like heteroscedasticity
J Jia, K Rohe, B Yu
Statistica Sinica, 0
42*
A critical threshold for design effects in network sampling
K Rohe
41*2019
Novel sampling design for respondent-driven sampling
M Khabbazian, B Hanlon, Z Russek, K Rohe
292017
The blessing of transitivity in sparse and stochastic networks
K Rohe, T Qin
arXiv preprint arXiv:1307.2302, 2013
232013
A new basis for sparse principal component analysis
F Chen, K Rohe
Journal of Computational and Graphical Statistics 33 (2), 421-434, 2024
21*2024
Estimating graph dimension with cross-validated eigenvalues
F Chen, S Roch, K Rohe, S Yu
arXiv preprint arXiv:2108.03336, 2021
202021
Asymptotic theory for estimating the singular vectors and values of a partially-observed low rank matrix with noise
J Cho, D Kim, K Rohe
Statistica Sinica, 1921-1948, 2017
202017
The highest dimensional stochastic blockmodel with a regularized estimator
K Rohe, T Qin, H Fan
Statistica Sinica, 1771-1786, 2014
192014
Central limit theorems for network driven sampling
X Li, K Rohe
182017
Discovering political topics in Facebook discussion threads with graph contextualization
Y Zhang, M Poux-Berthe, C Wells, K Koc-Michalska, K Rohe
14*2018
Nie można teraz wykonać tej operacji. Spróbuj ponownie później.
Prace 1–20