Obserwuj
Stanisław Jastrzębski
Stanisław Jastrzębski
CTO 👨💻 & CSO 🧪 @ Molecule.One
Zweryfikowany adres z molecule.one - Strona główna
Tytuł
Cytowane przez
Cytowane przez
Rok
A Closer Look at Memorization in Deep Networks
D Arpit*, S Jastrzebski*, N Ballas*, D Krueger*, E Bengio, MS Kanwal, ...
International Conference on Machine Learning 2017, 2017
9562017
Parameter-Efficient Transfer Learning for NLP
N Houlsby, A Giurgiu*, S Jastrzebski*, B Morrone, Q Laroussilhe, ...
International Conference on Machine Learning (ICML) 2019, 2019
4902019
Three factors influencing minima in SGD
S Jastrzebski*, Z Kenton*, D Arpit, N Ballas, A Fischer, Y Bengio, ...
International Conference on Artificial Neural Networks 2018; International …, 2017
2962017
Deep Neural Networks Improve Radiologists' Performance in Breast Cancer Screening
N Wu, J Phang, J Park, Y Shen, Z Huang, M Zorin, S Jastrzebski, T Févry, ...
2752019
Residual connections encourage iterative inference
S Jastrzebski*, D Arpit*, N Ballas, V Verma, T Che, Y Bengio
International Conference on Learning Algorithms (ICLR) 2018, 2017
752017
Learning to SMILE(S)
S Jastrzebski, D Lesniak, WM Czarnecki
International Conference on Learning Representation 2016 (Workshop track), 2016
75*2016
Learning to Compute Word Embeddings on the Fly
D Bahdanau, T Bosc*, S Jastrzebski*, E Grefenstette, P Vincent, Y Bengio
Montreal AI Symposium 2017, 2017
722017
Molecule Attention Transformer
Ł Maziarka, T Danel, S Mucha, K Rataj, J Tabor, S Jastrzębski
NeurIPS 2019 workshop; arXiv preprint arXiv:2002.08264, 2020
592020
How to evaluate word embeddings? On importance of data efficiency and simple supervised tasks
S Jastrzebski, D Leśniak, WM Czarnecki
arXiv preprint arXiv:1702.02170, 2017
592017
On the Relation Between the Sharpest Directions of DNN Loss and the SGD Step Length
S Jastrzębski, Z Kenton, N Ballas, A Fischer, Y Bengio, A Storkey
International Conference on Learning Algorithms (ICLR) 2019, 2019
57*2019
Evolutionary-Neural Hybrid Agents for Architecture Search
K Maziarz, A Khorlin, Q de Laroussilhe, S Jastrzebski, T Mingxing, ...
arXiv preprint arXiv:1811.09828, 2018
56*2018
The Break-Even Point on Optimization Trajectories of Deep Neural Networks
S Jastrzebski, M Szymczak, S Fort, D Arpit, J Tabor, K Cho, K Geras
International Conference on Learning Algorithms (ICLR) 2020, 2020
532020
An artificial intelligence system for predicting the deterioration of COVID-19 patients in the emergency department
FE Shamout, Y Shen, N Wu, A Kaku, J Park, T Makino, S Jastrzębski, ...
NPJ digital medicine 4 (1), 1-11, 2021
482021
Stiffness: A new perspective on generalization in neural networks
S Fort, PK Nowak, S Jastrzebski, S Narayanan
arXiv preprint arXiv:1901.09491, 2019
462019
Large Scale Structure of Neural Network Loss Landscapes
S Fort, S Jastrzebski
NeurIPS 2019, 2019
412019
Osprey: Hyperparameter optimization for machine learning
R McGibbon, C Hernández, M Harrigan, S Kearnes, M Sultan, ...
Journal of Open Source Software 1 (5), 34, 2016
392016
Cramer-Wold Auto-Encoder
S Knop, P Spurek, J Tabor, I Podolak, M Mazur, S Jastrzębski
Journal of Machine Learning Research 21 (164), 1-28, 2020
32*2020
Dynamical Isometry is Achieved in Residual Networks in a Universal Way for any Activation Function
W Tarnowski, P Warchoł, S Jastrzebski, J Tabor, M Nowak
AISTATS 2019, 2018
292018
Molecule Edit Graph Attention Network: Modeling Chemical Reactions as Sequences of Graph Edits
M Sacha, P Błaż, Mikołaj, Byrski, P Włodarczyk-Pruszyński, S Jastrzębski
Journal of Cheminformatics and Modeling (JCIM), 2020
272020
Emulating Docking Results Using a Deep Neural Network: A New Perspective for Virtual Screening
S Jastrzębski, M Szymczak, A Pocha, S Mordalski, J Tabor, AJ Bojarski, ...
Journal of Chemical Information and Modeling 60 (9), 4246-4262, 2020
172020
Nie można teraz wykonać tej operacji. Spróbuj ponownie później.
Prace 1–20