Pieter Abbeel
Pieter Abbeel
UC Berkeley | Covariant.AI
Zweryfikowany adres z cs.berkeley.edu - Strona główna
Tytuł
Cytowane przez
Cytowane przez
Rok
Model-agnostic meta-learning for fast adaptation of deep networks
C Finn, P Abbeel, S Levine
International Conference on Machine Learning, 1126-1135, 2017
36962017
Trust region policy optimization
J Schulman, S Levine, P Abbeel, M Jordan, P Moritz
International conference on machine learning, 1889-1897, 2015
35502015
Infogan: Interpretable representation learning by information maximizing generative adversarial nets
X Chen, Y Duan, R Houthooft, J Schulman, I Sutskever, P Abbeel
arXiv preprint arXiv:1606.03657, 2016
28502016
Apprenticeship learning via inverse reinforcement learning
P Abbeel, AY Ng
Proceedings of the twenty-first international conference on Machine learning, 1, 2004
26792004
End-to-end training of deep visuomotor policies
S Levine, C Finn, T Darrell, P Abbeel
The Journal of Machine Learning Research 17 (1), 1334-1373, 2016
23732016
Introduction to statistical relational learning
D Koller, N Friedman, S Džeroski, C Sutton, A McCallum, A Pfeffer, ...
MIT press, 2007
17722007
Soft actor-critic: Off-policy maximum entropy deep reinforcement learning with a stochastic actor
T Haarnoja, A Zhou, P Abbeel, S Levine
International Conference on Machine Learning, 1861-1870, 2018
16272018
High-dimensional continuous control using generalized advantage estimation
J Schulman, P Moritz, S Levine, M Jordan, P Abbeel
arXiv preprint arXiv:1506.02438, 2015
13652015
Multi-agent actor-critic for mixed cooperative-competitive environments
R Lowe, Y Wu, A Tamar, J Harb, P Abbeel, I Mordatch
arXiv preprint arXiv:1706.02275, 2017
13142017
Domain randomization for transferring deep neural networks from simulation to the real world
J Tobin, R Fong, A Ray, J Schneider, W Zaremba, P Abbeel
2017 IEEE/RSJ international conference on intelligent robots and systems …, 2017
11762017
Benchmarking deep reinforcement learning for continuous control
Y Duan, X Chen, R Houthooft, J Schulman, P Abbeel
International conference on machine learning, 1329-1338, 2016
11532016
Hindsight experience replay
M Andrychowicz, F Wolski, A Ray, J Schneider, R Fong, P Welinder, ...
arXiv preprint arXiv:1707.01495, 2017
9892017
Discriminative probabilistic models for relational data
B Taskar, P Abbeel, D Koller
arXiv preprint arXiv:1301.0604, 2012
9032012
A survey of research on cloud robotics and automation
B Kehoe, S Patil, P Abbeel, K Goldberg
IEEE Transactions on automation science and engineering 12 (2), 398-409, 2015
7352015
An application of reinforcement learning to aerobatic helicopter flight
P Abbeel, A Coates, M Quigley, AY Ng
Advances in neural information processing systems 19, 1, 2007
7202007
A simple neural attentive meta-learner
N Mishra, M Rohaninejad, X Chen, P Abbeel
arXiv preprint arXiv:1707.03141, 2017
6162017
Link prediction in relational data
B Taskar, MF Wong, P Abbeel, D Koller
Advances in neural information processing systems 16, 659-666, 2003
6022003
Autonomous helicopter aerobatics through apprenticeship learning
P Abbeel, A Coates, AY Ng
The International Journal of Robotics Research 29 (13), 1608-1639, 2010
5832010
Reinforcement learning with deep energy-based policies
T Haarnoja, H Tang, P Abbeel, S Levine
International Conference on Machine Learning, 1352-1361, 2017
5692017
Guided cost learning: Deep inverse optimal control via policy optimization
C Finn, S Levine, P Abbeel
International conference on machine learning, 49-58, 2016
5672016
Nie można teraz wykonać tej operacji. Spróbuj ponownie później.
Prace 1–20