Obserwuj
Hanbo Sun
Hanbo Sun
Zweryfikowany adres z mails.tsinghua.edu.cn - Strona główna
Tytuł
Cytowane przez
Cytowane przez
Rok
A configurable multi-precision CNN computing framework based on single bit RRAM
Z Zhu, H Sun, Y Lin, G Dai, L Xia, S Han, Y Wang, H Yang
2019 56th ACM/IEEE Design Automation Conference (DAC), 1-6, 2019
502019
Mixed size crossbar based RRAM CNN accelerator with overlapped mapping method
Z Zhu, J Lin, M Cheng, L Xia, H Sun, X Chen, Y Wang, H Yang
2018 IEEE/ACM International Conference on Computer-Aided Design (ICCAD), 1-8, 2018
252018
MNSIM 2.0: A behavior-level modeling tool for memristor-based neuromorphic computing systems
Z Zhu, H Sun, K Qiu, L Xia, G Krishnan, G Dai, D Niu, X Chen, XS Hu, ...
Proceedings of the 2020 on Great Lakes Symposium on VLSI, 83-88, 2020
172020
Rescuing memristor-based computing with non-linear resistance levels
J Lin, L Xia, Z Zhu, H Sun, Y Cai, H Gao, M Cheng, X Chen, Y Wang, ...
2018 Design, Automation & Test in Europe Conference & Exhibition (DATE), 407-412, 2018
132018
An energy-efficient quantized and regularized training framework for processing-in-memory accelerators
H Sun, Z Zhu, Y Cai, X Chen, Y Wang, H Yang
2020 25th Asia and South Pacific Design Automation Conference (ASP-DAC), 325-330, 2020
112020
Enabling efficient and flexible FPGA virtualization for deep learning in the cloud
S Zeng, G Dai, H Sun, K Zhong, G Ge, K Guo, Y Wang, H Yang
2020 IEEE 28th Annual International Symposium on Field-Programmable Custom …, 2020
102020
Black box search space profiling for accelerator-aware neural architecture search
S Zeng, H Sun, Y Xing, X Ning, Y Shan, X Chen, Y Wang, H Yang
2020 25th Asia and South Pacific Design Automation Conference (ASP-DAC), 518-523, 2020
62020
A unified FPGA virtualization framework for general-purpose deep neural networks in the cloud
S Zeng, G Dai, H Sun, J Liu, S Li, G Ge, K Zhong, K Guo, Y Wang, H Yang
ACM Transactions on Reconfigurable Technology and Systems (TRETS) 15 (3), 1-31, 2021
32021
Reliability-Aware Training and Performance Modeling for Processing-In-Memory Systems
H Sun, Z Zhu, Y Cai, S Zeng, K Qiu, Y Wang, H Yang
2021 26th Asia and South Pacific Design Automation Conference (ASP-DAC), 847-852, 2021
12021
Enable efficient and flexible FPGA virtualization for deep learning in the cloud
S Zeng, G Dai, K Zhong, H Sun, G Ge, K Guo, Y Wang, H Yang
Proceedings of the 2020 ACM/SIGDA International Symposium on Field …, 2020
12020
Gibbon: efficient co-exploration of NN model and processing-in-memory architecture
H Sun, C Wang, Z Zhu, X Ning, G Dai, H Yang, Y Wang
2022 Design, Automation & Test in Europe Conference & Exhibition (DATE), 867-872, 2022
2022
MNSIM-TIME: Performance Modeling Framework for Training-In-Memory Architectures
K Qiu, Z Zhu, Y Cai, H Sun, Y Wang, H Yang
2021 IEEE 3rd International Conference on Artificial Intelligence Circuits …, 2021
2021
3M-AI: A Multi-task and Multi-core Virtualization Framework for Multi-FPGA AI Systems in the Cloud
S Zeng, G Dai, H Sun, J Liu, H Zheng, Y Wu, F Zhang, X Yang, Y Cai, ...
The 2021 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays …, 2021
2021
Feature Variance Regularization: A Simple Way to Improve the Generalizability of Neural Networks
R Huang, H Sun, J Liu, L Tian, L Wang, Y Shan, Y Wang
Proceedings of the AAAI Conference on Artificial Intelligence 34 (04), 4190-4197, 2020
2020
Optimizing Graph-based Approximate Nearest Neighbor Search: Stronger and Smarter
J Liu, Z Zhu, J Hu, H Sun, L Liu, L Liu, G Dai, H Yang, Y Wang
Hardware Design and Software Practices for Efficient Neural Network Inference
Y Wang, X Ning, S Zeng, Y Cai, K Guo, H Sun, C Tang, T Lu, S Liang, ...
Low-Power Computer Vision, 55-90, 0
Nie można teraz wykonać tej operacji. Spróbuj ponownie później.
Prace 1–16