Obserwuj
Andrew Gordon Wilson
Tytuł
Cytowane przez
Cytowane przez
Rok
Averaging weights leads to wider optima and better generalization
P Izmailov, D Podoprikhin, T Garipov, D Vetrov, AG Wilson
Uncertainty in Artificial Intelligence (UAI), 2018
11962018
GPyTorch: Blackbox Matrix-Matrix Gaussian Process Inference with GPU Acceleration
JR Gardner, G Pleiss, D Bindel, KQ Weinberger, AG Wilson
Advances in Neural Information Processing Systems (NIPS), 2018
8702018
Deep kernel learning
AG Wilson, Z Hu, R Salakhutdinov, EP Xing
Artificial Intelligence and Statistics (AISTATS), 2016
8382016
Gaussian process kernels for pattern discovery and extrapolation
AG Wilson, RP Adams
Proceedings of the 30th International Conference on Machine Learning (ICML …, 2013
7272013
A simple baseline for Bayesian uncertainty in deep learning
W Maddox, T Garipov, P Izmailov, D Vetrov, AG Wilson
Advances in Neural Information Processing Systems (NeurIPS), 2019
6592019
BoTorch: A framework for efficient Monte-Carlo Bayesian optimization
M Balandat, B Karrer, D Jiang, S Daulton, B Letham, AG Wilson, E Bakshy
Advances in neural information processing systems 33, 21524-21538, 2020
570*2020
Loss surfaces, mode connectivity, and fast ensembling of DNNs
T Garipov, P Izmailov, D Podoprikhin, DP Vetrov, AG Wilson
Advances in Neural Information Processing Systems (NIPS), 2018
5322018
Kernel interpolation for scalable structured Gaussian processes (KISS-GP)
AG Wilson, H Nickisch
Proceedings of the 32nd International Conference on Machine Learning (ICML …, 2015
5252015
Bayesian deep learning and a probabilistic perspective of generalization
AG Wilson, P Izmailov
Advances in Neural Information Processing Systems (NeurIPS), 2020
4612020
Simple black-box adversarial attacks
C Guo, JR Gardner, Y You, AG Wilson, KQ Weinberger
International Conference on Machine Learning (ICML), 2019
4322019
Stochastic variational deep kernel learning
AG Wilson, Z Hu, RR Salakhutdinov, EP Xing
Advances in Neural Information Processing Systems (NIPS) 29, 2586-2594, 2016
2712016
There Are Many Consistent Explanations of Unlabeled Data: Why You Should Average
B Athiwaratkun, M Finzi, P Izmailov, AG Wilson
International Conference on Learning Representations (ICLR), 2019
259*2019
Student-t processes as alternatives to Gaussian processes
A Shah, AG Wilson, Z Ghahramani
Artificial Intelligence and Statistics, 877-885, 2014
2422014
What Are Bayesian Neural Network Posteriors Really Like?
P Izmailov, S Vikram, MD Hoffman, AG Wilson
International Conference on Machine Learning, 2021
2362021
Generalizing convolutional neural networks for equivariance to lie groups on arbitrary continuous data
M Finzi, S Stanton, P Izmailov, AG Wilson
International Conference on Machine Learning (ICML), 2020
2352020
Cyclical stochastic gradient MCMC for Bayesian deep learning
R Zhang, C Li, J Zhang, C Chen, AG Wilson
International Conference on Learning Representations (ICLR), 2019
2292019
Exact Gaussian processes on a million data points
KA Wang, G Pleiss, JR Gardner, S Tyree, KQ Weinberger, AG Wilson
Advances in Neural Information Processing Systems (NeurIPS), 2019
2272019
Bayesian optimization with gradients
J Wu, M Poloczek, AG Wilson, PI Frazier
Advances in Neural Information Processing Systems (NIPS) 30, 2017
2232017
Gaussian process regression networks
AG Wilson, DA Knowles, Z Ghahramani
Proceedings of the 29th International Conference on Machine Learning (ICML …, 2012
2022012
Fast kernel learning for multidimensional pattern extrapolation
AG Wilson, E Gilboa, JP Cunningham, A Nehorai
Advances in Neural Information Processing Systems (NIPS), 3626-3634, 2014
184*2014
Nie można teraz wykonać tej operacji. Spróbuj ponownie później.
Prace 1–20