Obserwuj
Ian Fox
Tytuł
Cytowane przez
Cytowane przez
Rok
Deep multi-output forecasting: Learning to accurately predict blood glucose trajectories
I Fox, L Ang, M Jaiswal, R Pop-Busui, J Wiens
Proceedings of the 24th ACM SIGKDD international conference on knowledge …, 2018
1022018
The ELFIN mission
V Angelopoulos, E Tsai, L Bingley, C Shaffer, DL Turner, A Runov, W Li, ...
Space science reviews 216, 1-45, 2020
982020
Deep reinforcement learning for closed-loop blood glucose control
I Fox, J Lee, R Pop-Busui, J Wiens
Machine Learning for Healthcare Conference, 508-536, 2020
662020
Deep Residual Time-Series Forecasting: Application to Blood Glucose Prediction.
H Rubin-Falcone, I Fox, J Wiens
KDH@ ECAI 20, 105-109, 2020
552020
Reinforcement learning for blood glucose control: Challenges and opportunities
I Fox, J Wiens
382019
The advantage of doubling: a deep reinforcement learning approach to studying the double team in the NBA
J Wang, I Fox, J Skaza, N Linck, S Singh, J Wiens
arXiv preprint arXiv:1803.02940, 2018
282018
Contextual motifs: Increasing the utility of motifs using contextual data
I Fox, L Ang, M Jaiswal, R Pop-Busui, J Wiens
Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge …, 2017
202017
Machine Learning for Physiological Time Series: Representing and Controlling Blood Glucose for Diabetes Management; University of Michigan
IG Fox
ProQuest Dissertations Publishing, 2020
172020
Cell list algorithms for nonequilibrium molecular dynamics
M Dobson, I Fox, A Saracino
Journal of Computational Physics 315, 211-220, 2016
132016
Deep Multi-Output Forecasting
I Fox, L Ang, M Jaiswal, R Pop-Busui, J Wiens
Proceedings of the 24th ACM SIGKDD International Conference on Knowledge …, 2018
72018
Association between management of continuous subcutaneous basal insulin administration and HbA1C
H Rubin-Falcone, I Fox, E Hirschfeld, L Ang, R Pop-Busui, JM Lee, ...
Journal of Diabetes Science and Technology 16 (5), 1120-1127, 2022
42022
Advocacy learning: Learning through competition and class-conditional representations
I Fox, J Wiens
arXiv preprint arXiv:1908.02723, 2019
32019
Machine learning for physiological time series: Representing and controlling blood glucose for diabetes management
I Fox
22020
Learning through limited self-supervision: Improving time-series classification without additional data via auxiliary tasks
I Fox, H Rubin-Falcone, J Wiens
22019
Personalized execution time optimization for the scheduled jobs
Y Liu, J Wang, Z Chen, I Fox, I Mufti, J Sukumaran, B He, X Sun, F Liang
arXiv preprint arXiv:2203.06158, 2022
12022
Contextual Motifs
I Fox, L Ang, M Jaiswal, R Pop-Busui, J Wiens
Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge …, 2017
12017
Atmospheric scattering of energetic electrons from near-Earth space
V Angelopoulos, E Tsai, C Wilkins, X Zhang, A Artemyev, J Liu, A Runov, ...
2021
Deep RL for Blood Glucose Control: Lessons, Challenges, and Opportunities
I Fox, J Lee, R Busui, J Wiens
Advocacy Learning
I Fox, J Wiens
Nie można teraz wykonać tej operacji. Spróbuj ponownie później.
Prace 1–19