Obserwuj
Eugenio Bargiacchi
Eugenio Bargiacchi
Zweryfikowany adres z ai.vub.ac.be
Tytuł
Cytowane przez
Cytowane przez
Rok
A practical guide to multi-objective reinforcement learning and planning
CF Hayes, R Rădulescu, E Bargiacchi, J Källström, M Macfarlane, ...
Autonomous Agents and Multi-Agent Systems 36 (1), 26, 2022
3602022
Learning to coordinate with coordination graphs in repeated single-stage multi-agent decision problems
E Bargiacchi, T Verstraeten, D Roijers, A Nowé, H Hasselt
International conference on machine learning, 482-490, 2018
502018
Multi-agent thompson sampling for bandit applications with sparse neighbourhood structures
T Verstraeten, E Bargiacchi, PJK Libin, J Helsen, DM Roijers, A Nowé
Scientific reports 10 (1), 6728, 2020
32*2020
Pareto conditioned networks
M Reymond, E Bargiacchi, A Nowé
arXiv preprint arXiv:2204.05036, 2022
302022
AI-Toolbox: A C++ library for reinforcement learning and planning (with Python bindings)
E Bargiacchi, DM Roijers, A Nowé
Journal of Machine Learning Research 21 (102), 1-12, 2020
25*2020
Cooperative Prioritized Sweeping.
E Bargiacchi, T Verstraeten, DM Roijers
AAMAS, 160-168, 2021
23*2021
Scalable optimization for wind farm control using coordination graphs
T Verstraeten, PJ Daems, E Bargiacchi, DM Roijers, PJK Libin, J Helsen
arXiv preprint arXiv:2101.07844, 2021
162021
Interactive multi-objective reinforcement learning in multi-armed bandits with gaussian process utility models
DM Roijers, LM Zintgraf, P Libin, M Reymond, E Bargiacchi, A Nowé
Machine Learning and Knowledge Discovery in Databases: European Conference …, 2021
112021
Reinforcement learning 101 with a virtual reality game
Y Coppens, E Bargiacchi, A Nowé
Proceedings of the 1st international workshop on education in artificial …, 2019
82019
Decentralized solutions and tactics for rts
E Bargiacchi, CR Verschoor, G Li, DM Roijers
BNAIC 2013: Proceedings of the 25th Benelux Conference on Artificial …, 2013
72013
Multi-agent rmax for multi-agent multi-armed bandits
E Bargiacchi, R Avalos, T Verstraeten, P Libin, A Nowé, DM Roijers
Proc. of Adaptive and Learning Agents Worksh, 2022
62022
P1415R1: SG19 Machine Learning Layered List
M Wong, V Reverdy, R Dubey, R Dosselmann, E Bargiacchi, J Inglada
ISO JTC1/SC22/WG21: Programming Language C++, accessed 9 Aug. 2020. http …, 2019
62019
Dynamic resource allocation for multi-camera systems
E Bargiacchi
Master's thesis, University of Amsterdam, 2016
32016
A Brief Guide to Multi-Objective Reinforcement Learning and Planning
CF Hayes, R Rădulescu, E Bargiacchi, J Kallstrom, M Macfarlane, ...
Proceedings of the 2023 International Conference on Autonomous Agents and …, 2023
22023
Dutch Nao Team Team Description for RoboCup 2014-Joao Pessoa, Brasil
P de Kok, D ten Velthuis, N Backer, J van Eck, F Voorter, A Visser, ...
University of Amsterdam, TU Delft & Maastricht University, 2014
22014
Heuristic coordination in cooperative multi-agent reinforcement learning
R Petri, E Bargiacchi, H Aldewereld, D Roijers
Proceedings van de 33rd Benelux Conference on Artificial Intelligence en …, 2021
12021
Thompson sampling for loosely-coupled multi-agent systems: An application to wind farm control
T Verstraeten, E Bargiacchi, PJ Libin, J Helsen, DM Roijers, A Nowé
Adaptive and Learning Agents Workshop, 2020
12020
Online Planning in POMDPs with State-Requests
R Avalos, E Bargiacchi, A Nowé, DM Roijers, FA Oliehoek
arXiv preprint arXiv:2407.18812, 2024
2024
Interactively Learning the User's Utility for Best-Arm Identification in Multi-Objective Multi-Armed Bandits
M Reymond, E Bargiacchi, DM Roijers, A Nowé
Proceedings of the 23rd International Conference on Autonomous Agents and …, 2024
2024
Controlling Large Scale Multi-Agent Environments with Model-Based Reinforcement Learning
E Bargiacchi
2024
Nie można teraz wykonać tej operacji. Spróbuj ponownie później.
Prace 1–20