Obserwuj
Percy Liang
Percy Liang
Associate Professor of Computer Science, Stanford University
Zweryfikowany adres z cs.stanford.edu - Strona główna
Tytuł
Cytowane przez
Cytowane przez
Rok
Squad: 100,000+ questions for machine comprehension of text
P Rajpurkar
arXiv preprint arXiv:1606.05250, 2016
89622016
On the opportunities and risks of foundation models
R Bommasani, DA Hudson, E Adeli, R Altman, S Arora, S von Arx, ...
arXiv preprint arXiv:2108.07258, 2021
42702021
Prefix-tuning: Optimizing continuous prompts for generation
XL Li, P Liang
arXiv preprint arXiv:2101.00190, 2021
38532021
Understanding black-box predictions via influence functions
PW Koh, P Liang
International conference on machine learning, 1885-1894, 2017
33002017
Know what you don't know: Unanswerable questions for SQuAD
P Rajpurkar, R Jia, P Liang
arXiv preprint arXiv:1806.03822, 2018
30892018
Emergent abilities of large language models
J Wei, Y Tay, R Bommasani, C Raffel, B Zoph, S Borgeaud, D Yogatama, ...
arXiv preprint arXiv:2206.07682, 2022
24182022
Semantic parsing on freebase from question-answer pairs
J Berant, A Chou, R Frostig, P Liang
Proceedings of the 2013 conference on empirical methods in natural language …, 2013
22942013
Stanford alpaca: An instruction-following llama model
R Taori, I Gulrajani, T Zhang, Y Dubois, X Li, C Guestrin, P Liang, ...
21112023
Adversarial examples for evaluating reading comprehension systems
R Jia, P Liang
arXiv preprint arXiv:1707.07328, 2017
17952017
Distributionally robust neural networks for group shifts: On the importance of regularization for worst-case generalization
S Sagawa, PW Koh, TB Hashimoto, P Liang
arXiv preprint arXiv:1911.08731, 2019
17822019
Strategies for pre-training graph neural networks
W Hu, B Liu, J Gomes, M Zitnik, P Liang, V Pande, J Leskovec
arXiv preprint arXiv:1905.12265, 2019
15672019
Wilds: A benchmark of in-the-wild distribution shifts
PW Koh, S Sagawa, H Marklund, SM Xie, M Zhang, A Balsubramani, ...
International conference on machine learning, 5637-5664, 2021
14612021
Generative agents: Interactive simulacra of human behavior
JS Park, J O'Brien, CJ Cai, MR Morris, P Liang, MS Bernstein
Proceedings of the 36th annual acm symposium on user interface software and …, 2023
14182023
Beyond the imitation game: Quantifying and extrapolating the capabilities of language models
A Srivastava, A Rastogi, A Rao, AAM Shoeb, A Abid, A Fisch, AR Brown, ...
arXiv preprint arXiv:2206.04615, 2022
11612022
Certified defenses against adversarial examples
A Raghunathan, J Steinhardt, P Liang
arXiv preprint arXiv:1801.09344, 2018
11352018
Holistic evaluation of language models
P Liang, R Bommasani, T Lee, D Tsipras, D Soylu, M Yasunaga, Y Zhang, ...
arXiv preprint arXiv:2211.09110, 2022
10842022
QuAC: Question answering in context
E Choi, H He, M Iyyer, M Yatskar, W Yih, Y Choi, P Liang, L Zettlemoyer
arXiv preprint arXiv:1808.07036, 2018
9482018
Lost in the middle: How language models use long contexts
NF Liu, K Lin, J Hewitt, A Paranjape, M Bevilacqua, F Petroni, P Liang
Transactions of the Association for Computational Linguistics 12, 157-173, 2024
9252024
Certified defenses for data poisoning attacks
J Steinhardt, PWW Koh, PS Liang
Advances in neural information processing systems 30, 2017
9092017
Concept bottleneck models
PW Koh, T Nguyen, YS Tang, S Mussmann, E Pierson, B Kim, P Liang
International conference on machine learning, 5338-5348, 2020
8302020
Nie można teraz wykonać tej operacji. Spróbuj ponownie później.
Prace 1–20