Obserwuj
Luca Saglietti
Luca Saglietti
Bocconi University - Computing Sciences
Zweryfikowany adres z unibocconi.it - Strona główna
Tytuł
Cytowane przez
Cytowane przez
Rok
Unreasonable effectiveness of learning neural networks: From accessible states and robust ensembles to basic algorithmic schemes
C Baldassi, C Borgs, JT Chayes, A Ingrosso, C Lucibello, L Saglietti, ...
Proceedings of the National Academy of Sciences 113 (48), E7655-E7662, 2016
2012016
Subdominant dense clusters allow for simple learning and high computational performance in neural networks with discrete synapses
C Baldassi, A Ingrosso, C Lucibello, L Saglietti, R Zecchina
Physical review letters 115 (12), 128101, 2015
1622015
Gaussian process prior variational autoencoders
FP Casale, A Dalca, L Saglietti, J Listgarten, N Fusi
Advances in neural information processing systems 31, 2018
1442018
Local entropy as a measure for sampling solutions in constraint satisfaction problems
C Baldassi, A Ingrosso, C Lucibello, L Saglietti, R Zecchina
Journal of Statistical Mechanics: Theory and Experiment 2016 (2), 023301, 2016
652016
Learning may need only a few bits of synaptic precision
C Baldassi, F Gerace, C Lucibello, L Saglietti, R Zecchina
Physical Review E 93 (5), 052313, 2016
352016
Probing transfer learning with a model of synthetic correlated datasets
F Gerace, L Saglietti, SS Mannelli, A Saxe, L Zdeborová
Machine Learning: Science and Technology 3 (1), 015030, 2022
322022
Role of synaptic stochasticity in training low-precision neural networks
C Baldassi, F Gerace, HJ Kappen, C Lucibello, L Saglietti, E Tartaglione, ...
Physical review letters 120 (26), 268103, 2018
262018
An analytical theory of curriculum learning in teacher-student networks
L Saglietti, S Mannelli, A Saxe
Advances in Neural Information Processing Systems 35, 21113-21127, 2022
252022
Solvable model for inheriting the regularization through knowledge distillation
L Saglietti, L Zdeborová
Mathematical and Scientific Machine Learning, 809-846, 2022
222022
Star-shaped space of solutions of the spherical negative perceptron
BL Annesi, C Lauditi, C Lucibello, EM Malatesta, G Perugini, F Pittorino, ...
Physical Review Letters 131 (22), 227301, 2023
142023
Generalized approximate survey propagation for high-dimensional estimation
C Lucibello, L Saglietti, Y Lu
International Conference on Machine Learning, 4173-4182, 2019
112019
From inverse problems to learning: a statistical mechanics approach
C Baldassi, F Gerace, L Saglietti, R Zecchina
Journal of Physics: Conference Series 955 (1), 012001, 2018
72018
Large deviations in the perceptron model and consequences for active learning
H Cui, L Saglietti, L Zdeborová
Machine Learning: Science and Technology 2 (4), 045001, 2021
62021
From statistical inference to a differential learning rule for stochastic neural networks
L Saglietti, F Gerace, A Ingrosso, C Baldassi, R Zecchina
Interface Focus 8 (6), 20180033, 2018
62018
Large deviations for the perceptron model and consequences for active learning
H Cui, L Saglietti, L Zdeborova
Mathematical and Scientific Machine Learning, 390-430, 2020
32020
Compressed sensing with ℓ0-norm: statistical physics analysis & algorithms for signal recovery
D Barbier, C Lucibello, L Saglietti, F Krzakala, L Zdeborová
2023 IEEE Information Theory Workshop (ITW), 323-328, 2023
22023
Unfair geometries: exactly solvable data model with fairness implications
SS Mannelli, F Gerace, N Rostamzadeh, L Saglietti
arXiv preprint arXiv:2205.15935, 2022
22022
Optimal transfer protocol by incremental layer defrosting
F Gerace, D Doimo, SS Mannelli, L Saglietti, A Laio
arXiv preprint arXiv:2303.01429, 2023
12023
Inducing bias is simpler than you think
SS Mannelli, F Gerace, N Rostamzadeh, L Saglietti
arXiv preprint arXiv:2205.15935, 2022
12022
Out of Equilibrium Statistical Physics of Learning
L Saglietti
Politecnico di Torino, 2018
12018
Nie można teraz wykonać tej operacji. Spróbuj ponownie później.
Prace 1–20