Obserwuj
Keping Bi
Tytuł
Cytowane przez
Cytowane przez
Rok
Unbiased learning to rank with unbiased propensity estimation
Q Ai, K Bi, C Luo, J Guo, WB Croft
The 41st international ACM SIGIR conference on research & development in …, 2018
2402018
Learning a deep listwise context model for ranking refinement
Q Ai, K Bi, J Guo, WB Croft
The 41st international ACM SIGIR conference on research & development in …, 2018
2362018
Learning a hierarchical embedding model for personalized product search
Q Ai, Y Zhang, K Bi, X Chen, WB Croft
Proceedings of the 40th International ACM SIGIR Conference on Research and …, 2017
1472017
Conversational product search based on negative feedback
K Bi, Q Ai, Y Zhang, WB Croft
Proceedings of the 28th acm international conference on information and …, 2019
752019
Explainable product search with a dynamic relation embedding model
Q Ai, Y Zhang, K Bi, WB Croft
ACM Transactions on Information Systems (TOIS) 38 (1), 1-29, 2019
602019
A transformer-based embedding model for personalized product search
K Bi, Q Ai, WB Croft
Proceedings of the 43rd International ACM SIGIR Conference on Research and …, 2020
502020
Asking clarifying questions based on negative feedback in conversational search
K Bi, Q Ai, WB Croft
Proceedings of the 2021 ACM SIGIR International Conference on Theory of …, 2021
342021
Learning a fine-grained review-based transformer model for personalized product search
K Bi, Q Ai, WB Croft
Proceedings of the 44th International ACM SIGIR Conference on Research and …, 2021
302021
AREDSUM: Adaptive redundancy-aware iterative sentence ranking for extractive document summarization
K Bi, R Jha, WB Croft, A Celikyilmaz
arXiv preprint arXiv:2004.06176, 2020
302020
Extracting search-focused key n-grams for relevance ranking in web search
C Wang, K Bi, Y Hu, H Li, G Cao
Proceedings of the fifth ACM international conference on Web search and data …, 2012
182012
Leverage implicit feedback for context-aware product search
K Bi, CH Teo, Y Dattatreya, V Mohan, WB Croft
arXiv preprint arXiv:1909.02065, 2019
172019
When Do LLMs Need Retrieval Augmentation? Mitigating LLMs' Overconfidence Helps Retrieval Augmentation
S Ni, K Bi, J Guo, X Cheng
arXiv preprint arXiv:2402.11457, 2024
152024
Iterative relevance feedback for answer passage retrieval with passage-level semantic match
K Bi, Q Ai, WB Croft
Advances in Information Retrieval: 41st European Conference on IR Research …, 2019
142019
A study of context dependencies in multi-page product search
K Bi, CH Teo, Y Dattatreya, V Mohan, WB Croft
Proceedings of the 28th ACM International Conference on Information and …, 2019
112019
Revisiting iterative relevance feedback for document and passage retrieval
K Bi, Q Ai, WB Croft
arXiv preprint arXiv:1812.05731, 2018
102018
Came: Competitively learning a mixture-of-experts model for first-stage retrieval
J Guo, Y Cai, K Bi, Y Fan, W Chen, R Zhang, X Cheng
ACM Transactions on Information Systems 43 (2), 1-25, 2025
6*2025
MORE: Multi-mOdal REtrieval Augmented Generative Commonsense Reasoning
W Cui, K Bi, J Guo, X Cheng
arXiv preprint arXiv:2402.13625, 2024
62024
A comparative study of training objectives for clarification facet generation
S Ni, K Bi, J Guo, X Cheng
Proceedings of the Annual International ACM SIGIR Conference on Research and …, 2023
62023
Pre-training with aspect-content text mutual prediction for multi-aspect dense retrieval
X Sun, K Bi, J Guo, X Ma, Y Fan, H Shan, Q Zhang, Z Liu
Proceedings of the 32nd ACM International Conference on Information and …, 2023
52023
Feature-Enhanced Network with Hybrid Debiasing Strategies for Unbiased Learning to Rank
L Yu, Y Wang, X Sun, K Bi, J Guo
arXiv preprint arXiv:2302.07530, 2023
42023
Nie można teraz wykonać tej operacji. Spróbuj ponownie później.
Prace 1–20