Obserwuj
Michał Koziarski
Michał Koziarski
Zweryfikowany adres z agh.edu.pl
Tytuł
Cytowane przez
Cytowane przez
Rok
Image recognition with deep neural networks in presence of noise – Dealing with and taking advantage of distortions
M Koziarski, B Cyganek
Integrated Computer-Aided Engineering 24 (4), 337-349, 2017
1512017
Radial-Based Oversampling for noisy imbalanced data classification
M Koziarski, B Krawczyk, M Woźniak
Neurocomputing 343, 19-33, 2019
782019
Radial-based undersampling for imbalanced data classification
M Koziarski
Pattern Recognition 102, 107262, 2020
582020
CCR: A Combined Cleaning and Resampling Algorithm for Imbalanced Data Classification
M Koziarski, M Woźniak
International Journal of Applied Mathematics and Computer Science 27 (4 …, 2017
532017
Radial-Based Oversampling for multiclass imbalanced data classification
B Krawczyk, M Koziarski, M Woźniak
IEEE Transactions on Neural Networks and Learning Systems, 2019
492019
Combined cleaning and resampling algorithm for multi-class imbalanced data with label noise
M Koziarski, M Woźniak, B Krawczyk
Knowledge-Based Systems 204, 106223, 2020
432020
Impact of Low Resolution on Image Recognition with Deep Neural Networks: An Experimental Study
M Koziarski, B Cyganek
International Journal of Applied Mathematics and Computer Science 28 (4 …, 2018
402018
Radial-based approach to imbalanced data oversampling
M Koziarski, B Krawczyk, M Woźniak
International Conference on Hybrid Artificial Intelligence Systems, 318-327, 2017
192017
CSMOUTE: Combined synthetic oversampling and undersampling technique for imbalanced data classification
M Koziarski
2021 International Joint Conference on Neural Networks (IJCNN), 1-8, 2021
132021
Convolutional neural network-based classification of histopathological images affected by data imbalance
M Koziarski, B Kwolek, B Cyganek
International Conference on Pattern Recognition (ICPR), Workshop on Deep …, 2018
132018
Analysis of group evolution prediction in complex networks
S Saganowski, P Bródka, M Koziarski, P Kazienko
PloS one 14 (10), e0224194, 2019
122019
The deterministic subspace method for constructing classifier ensembles
M Koziarski, B Krawczyk, M Woźniak
Pattern Analysis and Applications 20 (4), 981-990, 2017
122017
Deep neural image denoising
M Koziarski, B Cyganek
International Conference on Computer Vision and Graphics, 163-173, 2016
102016
A multiresolution grid structure applied to seafloor shape modeling
W Maleika, M Koziarski, P Forczmański
ISPRS International Journal of Geo-Information 7 (3), 119, 2018
82018
Breast cancer classification on histopathological images affected by data imbalance using active learning and deep convolutional neural network
B Kwolek, M Koziarski, A Bukała, Z Antosz, B Olborski, P Wąsowicz, ...
International Conference on Artificial Neural Networks, 299-312, 2019
72019
Two-stage resampling for convolutional neural network training in the imbalanced colorectal cancer image classification
M Koziarski
2021 International Joint Conference on Neural Networks (IJCNN), 1-8, 2021
62021
Marine snow removal using a fully convolutional 3D neural network combined with an adaptive median filter
M Koziarski, B Cyganek
International Conference on Pattern Recognition, 16-25, 2018
62018
Radial-based undersampling algorithm for classification of breast cancer histopathological images affected by data imbalance
M Koziarski
2019 12th International Congress on Image and Signal Processing, BioMedical …, 2019
52019
DiagSet: a dataset for prostate cancer histopathological image classification
M Koziarski, B Cyganek, B Olborski, Z Antosz, M Żydak, B Kwolek, ...
arXiv preprint arXiv:2105.04014, 2021
32021
Examination of the deep neural networks in classification of distorted signals
M Koziarski, B Cyganek
International Conference on Artificial Intelligence and Soft Computing, 680-688, 2016
22016
Nie można teraz wykonać tej operacji. Spróbuj ponownie później.
Prace 1–20