Obserwuj
Alex Kendall
Tytuł
Cytowane przez
Cytowane przez
Rok
SegNet: A deep convolutional encoder-decoder architecture for scene segmentation
V Badrinarayanan, A Kendall, R Cipolla
IEEE transactions on pattern analysis and machine intelligence, 2017
217942017
What Uncertainties Do We Need in Bayesian Deep Learning for Computer Vision?
A Kendall, Y Gal
Advances in Neural Information Processing Systems, 2017
58032017
Multi-task learning using uncertainty to weigh losses for scene geometry and semantics
A Kendall, Y Gal, R Cipolla
Proceedings of the IEEE Conf. on Computer Vision and Pattern Recognition, 2018
37382018
PoseNet: A Convolutional Network for Real-Time 6-DOF Camera Relocalization
A Kendall, M Grimes, R Cipolla
Proceedings of the IEEE International Conference on Computer Vision, 2015
28922015
End-to-End Learning of Geometry and Context for Deep Stereo Regression
A Kendall, H Martirosyan, S Dasgupta, P Henry, R Kennedy, A Bachrach, ...
Proceedings of the IEEE International Conference on Computer Vision, 2017
1697*2017
Bayesian SegNet: Model Uncertainty in Deep Convolutional Encoder-Decoder Architectures for Scene Understanding.
A Kendall, V Badrinarayanan, R Cipolla
Proceedings of the British Machine Vision Conference, 2017
14502017
Geometric loss functions for camera pose regression with deep learning
A Kendall, R Cipolla
Proceedings of the IEEE Conf. on Computer Vision and Pattern Recognition, 2017
9312017
Learning to Drive in a Day
A Kendall, J Hawke, D Janz, P Mazur, D Reda, JM Allen, VD Lam, ...
Proceedings of the International Conference on Robotics and Automation (ICRA), 2019
8462019
Concrete Dropout
Y Gal, J Hron, A Kendall
Advances in Neural Information Processing Systems, 2017
7602017
Modelling Uncertainty in Deep Learning for Camera Relocalization
A Kendall, R Cipolla
Proceedings of the IEEE International Conference on Robotics and Automation 2016, 2015
6702015
Orthographic feature transform for monocular 3d object detection
T Roddick, A Kendall, R Cipolla
Proceedings of the British Machine Vision Conference (BMVC), 2019
4222019
Concrete problems for autonomous vehicle safety: Advantages of Bayesian deep learning
RT McAllister, Y Gal, A Kendall, M Van Der Wilk, A Shah, R Cipolla, ...
International Joint Conferences on Artificial Intelligence, Inc., 2017
3702017
Fiery: Future instance prediction in bird's-eye view from surround monocular cameras
A Hu, Z Murez, N Mohan, S Dudas, J Hawke, V Badrinarayanan, ...
Proceedings of the IEEE/CVF International Conference on Computer Vision …, 2021
2802021
Urban driving with conditional imitation learning
J Hawke, R Shen, C Gurau, S Sharma, D Reda, N Nikolov, P Mazur, ...
2020 IEEE International Conference on Robotics and Automation (ICRA), 251-257, 2020
1802020
Object tracking by an unmanned aerial vehicle using visual sensors
S Dasgupta, H Martirosyan, H Koppula, A Kendall, A Stone, M Donahoe, ...
US Patent 11,295,458, 2022
1672022
Advances in neural information processing systems
A Kendall, Y Gal
Curran Associates, Inc, 5574-5584, 2017
1572017
Gaia-1: A generative world model for autonomous driving
A Hu, L Russell, H Yeo, Z Murez, G Fedoseev, A Kendall, J Shotton, ...
arXiv preprint arXiv:2309.17080, 2023
1472023
Learning to Drive from Simulation without Real World Labels
A Bewley, J Rigley, Y Liu, J Hawke, R Shen, VD Lam, A Kendall
Proceedings of the International Conference on Robotics and Automation (ICRA), 2019
1362019
Model-based imitation learning for urban driving
A Hu, G Corrado, N Griffiths, Z Murez, C Gurau, H Yeo, A Kendall, ...
Advances in Neural Information Processing Systems 35, 20703-20716, 2022
1232022
Probabilistic future prediction for video scene understanding
A Hu, F Cotter, N Mohan, C Gurau, A Kendall
Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August 23 …, 2020
892020
Nie można teraz wykonać tej operacji. Spróbuj ponownie później.
Prace 1–20