Density estimation using real nvp L Dinh, J Sohl-Dickstein, S Bengio arXiv preprint arXiv:1605.08803, 2016 | 1076 | 2016 |
Predicting parameters in deep learning M Denil, B Shakibi, L Dinh, MA Ranzato, N De Freitas arXiv preprint arXiv:1306.0543, 2013 | 959 | 2013 |
Nice: Non-linear independent components estimation L Dinh, D Krueger, Y Bengio arXiv preprint arXiv:1410.8516, 2014 | 719 | 2014 |
A recurrent latent variable model for sequential data J Chung, K Kastner, L Dinh, K Goel, A Courville, Y Bengio arXiv preprint arXiv:1506.02216, 2015 | 714 | 2015 |
Theano: A Python framework for fast computation of mathematical expressions R Al-Rfou, G Alain, A Almahairi, C Angermueller, D Bahdanau, N Ballas, ... arXiv e-prints, arXiv: 1605.02688, 2016 | 615 | 2016 |
Sharp minima can generalize for deep nets L Dinh, R Pascanu, S Bengio, Y Bengio International Conference on Machine Learning, 1019-1028, 2017 | 322 | 2017 |
Theano: A Python framework for fast computation of mathematical expressions TTD Team, R Al-Rfou, G Alain, A Almahairi, C Angermueller, D Bahdanau, ... arXiv preprint arXiv:1605.02688, 2016 | 161 | 2016 |
Techniques for learning binary stochastic feedforward neural networks T Raiko, M Berglund, G Alain, L Dinh arXiv preprint arXiv:1406.2989, 2014 | 102 | 2014 |
Videoflow: A flow-based generative model for video M Kumar, M Babaeizadeh, D Erhan, C Finn, S Levine, L Dinh, D Kingma arXiv preprint arXiv:1903.01434 2 (5), 2019 | 62 | 2019 |
Fast approximate natural gradient descent in a kronecker-factored eigenbasis T George, C Laurent, X Bouthillier, N Ballas, P Vincent arXiv preprint arXiv:1806.03884, 2018 | 40 | 2018 |
Discrete flows: Invertible generative models of discrete data D Tran, K Vafa, KK Agrawal, L Dinh, B Poole arXiv preprint arXiv:1905.10347, 2019 | 38 | 2019 |
Harm de Vries, David Warde-Farley, Dustin J R Al-Rfou, G Alain, A Almahairi, C Angermueller, D Bahdanau, N Ballas, ... Webb, Matthew Willson, Kelvin Xu, Lijun Xue, Li Yao, Saizheng Zhang, and …, 2016 | 27 | 2016 |
Learning awareness models B Amos, L Dinh, S Cabi, T Rothörl, SG Colmenarejo, A Muldal, T Erez, ... arXiv preprint arXiv:1804.06318, 2018 | 25 | 2018 |
Videoflow: A conditional flow-based model for stochastic video generation M Kumar, M Babaeizadeh, D Erhan, C Finn, S Levine, L Dinh, D Kingma arXiv preprint arXiv:1903.01434, 2019 | 23 | 2019 |
Deep independence network analysis of structural brain imaging: application to schizophrenia E Castro, RD Hjelm, SM Plis, L Dinh, JA Turner, VD Calhoun IEEE transactions on medical imaging 35 (7), 1729-1740, 2016 | 23 | 2016 |
Unreproducible research is reproducible X Bouthillier, C Laurent, P Vincent International Conference on Machine Learning, 725-734, 2019 | 22 | 2019 |
Theano: A Python framework for fast computation of mathematical expressions. arXiv e-prints, abs/1605.02688 R Al-Rfou, G Alain, A Almahairi, C Angermueller, D Bahdanau, N Ballas, ... URL http://arxiv. org/abs/1605.02688, 2016 | 21 | 2016 |
Learnable explicit density for continuous latent space and variational inference CW Huang, A Touati, L Dinh, M Drozdzal, M Havaei, L Charlin, ... arXiv preprint arXiv:1710.02248, 2017 | 17 | 2017 |
Augmented normalizing flows: Bridging the gap between generative flows and latent variable models CW Huang, L Dinh, A Courville arXiv preprint arXiv:2002.07101, 2020 | 14 | 2020 |
A RAD approach to deep mixture models L Dinh, J Sohl-Dickstein, R Pascanu, H Larochelle arXiv preprint arXiv:1903.07714, 2019 | 14 | 2019 |