Obserwuj
Alexander Marx
Alexander Marx
Professor, TU Dortmund
Zweryfikowany adres z tu-dortmund.de - Strona główna
Tytuł
Cytowane przez
Cytowane przez
Rok
EDISON-WMW: exact dynamic programing solution of the Wilcoxon–Mann–Whitney test
A Marx, C Backes, E Meese, HP Lenhof, A Keller
Genomics, Proteomics and Bioinformatics 14 (1), 55-61, 2016
1432016
Telling Cause from Effect using MDL-based Local and Global Regression
A Marx, J Vreeken
2017 IEEE International Conference on Data Mining (ICDM), 307–316, 2017
542017
On the identifiability and estimation of causal location-scale noise models
A Immer, C Schultheiss, JE Vogt, B Schölkopf, P Bühlmann, A Marx
International Conference on Machine Learning, 14316-14332, 2023
412023
Testing Conditional Independence on Discrete Data using Stochastic Complexity
A Marx, J Vreeken
The 22nd International Conference on Artificial Intelligence and Statistics, 2019
342019
Identifiability Results for Multimodal Contrastive Learning
I Daunhawer, A Bizeul, E Palumbo, A Marx, JE Vogt
International Conference on Learning Representations, 2023
332023
Discovering Fully Oriented Causal Networks
O Mian, A Marx, J Vreeken
Proceedings of the AAAI Conference on Artificial Intelligence (AAAI), 2021
312021
Identifiability of Cause and Effect using Regularized Regression
A Marx, J Vreeken
SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD), 2019
272019
Estimating conditional mutual information for discrete-continuous mixtures using multi-dimensional adaptive histograms
A Marx, L Yang, M van Leeuwen
Proceedings of the 2021 SIAM International Conference on Data Mining (SDM …, 2021
252021
Integrative analysis of epigenetics data identifies gene-specific regulatory elements
F Schmidt, A Marx, N Baumgarten, M Hebel, M Wegner, M Kaulich, ...
Nucleic Acids Research 49 (18), 10397-10418, 2021
242021
Beyond normal: On the evaluation of mutual information estimators
P Czyż, F Grabowski, J Vogt, N Beerenwinkel, A Marx
Advances in Neural Information Processing Systems 36, 2024
222024
Inferring Cause and Effect in the Presence of Heteroscedastic Noise
S Xu, OA Mian, A Marx, J Vreeken
International Conference on Machine Learning, 24615-24630, 2022
22*2022
Causal Inference on Multivariate and Mixed-Type Data
A Marx, J Vreeken
Joint European Conference on Machine Learning and Knowledge Discovery in …, 2019
222019
Telling cause from effect by local and global regression
A Marx, J Vreeken
Knowledge and Information Systems 60 (3), 1277-1305, 2019
202019
A Weaker Faithfulness Assumption based on Triple Interactions
A Marx, A Gretton, JM Mooij
Conference on Uncertainty in Artificial Intelligence (UAI), 2021
192021
Formally Justifying MDL-based Inference of Cause and Effect
A Marx, J Vreeken
AAAI'22 Workshop on Information-Theoretic Methods for Causal Inference and …, 2022
172022
Effective Bayesian Heteroscedastic Regression with Deep Neural Networks
A Immer, E Palumbo, A Marx, J Vogt
Advances in Neural Information Processing Systems 36, 2024
82024
Blood glucose forecasting from temporal and static information in children with T1D
A Marx, F Di Stefano, H Leutheuser, K Chin-Cheong, M Pfister, ...
Frontiers in Pediatrics 11, 1296904, 2023
42023
Causal Discovery by Telling Apart Parents and Children
A Marx, J Vreeken
arXiv preprint arXiv:1808.06356, 2018
32018
On the Properties and Estimation of Pointwise Mutual Information Profiles
P Czyż, F Grabowski, JE Vogt, N Beerenwinkel, A Marx
Sixth Symposium on Advances in Approximate Bayesian Inference-Non Archival Track, 2024
2*2024
Estimating Mutual Information via Geodesic kNN
A Marx, J Fischer
Proceedings of the 2022 SIAM International Conference on Data Mining (SDM …, 2022
22022
Nie można teraz wykonać tej operacji. Spróbuj ponownie później.
Prace 1–20