Obserwuj
Jian Liang (梁坚)
Tytuł
Cytowane przez
Cytowane przez
Rok
Do We Really Need to Access the Source Data? Source Hypothesis Transfer for Unsupervised Domain Adaptation
J Liang, D Hu, J Feng
International Conference on Machine Learning, 6028-6039, 2020
11192020
Deep Spatial Feature Reconstruction for Partial Person Re-identification: Alignment-free Approach
L He, J Liang, H Li, Z Sun
Proceedings of the IEEE Conference on Computer Vision and Pattern …, 2018
3322018
Source Data-absent Unsupervised Domain Adaptation through Hypothesis Transfer and Labeling Transfer
J Liang, D Hu, Y Wang, R He, J Feng
IEEE Transactions on Pattern Analysis and Machine Intelligence 44 (11), 8602 …, 2022
2412022
No Fear of Heterogeneity: Classifier Calibration for Federated Learning with Non-IID Data
M Luo, F Chen, D Hu, Y Zhang, J Liang, J Feng
Annual Conference on Neural Information Processing Systems, 5972-5984, 2021
2332021
Domain Adaptation with Auxiliary Target Domain-Oriented Classifier
J Liang, D Hu, J Feng
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern …, 2021
1792021
Aggregating Randomized Clustering-Promoting Invariant Projections for Domain Adaptation
J Liang, R He, Z Sun, T Tan
IEEE Transactions on Pattern Analysis and Machine Intelligence 41 (5), 1027-1042, 2019
1432019
Exploring Uncertainty in Pseudo-label Guided Unsupervised Domain Adaptation
J Liang, R He, Z Sun, T Tan
Pattern Recognition Journal, 2019
1322019
A Balanced and Uncertainty-aware Approach for Partial Domain Adaptation
J Liang, Y Wang, D Hu, R He, J Feng
European Conference on Computer Vision, 123-140, 2020
1282020
DINE: Domain Adaptation from Single and Multiple Black-box Predictors
J Liang, D Hu, J Feng, R He
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern …, 2022
113*2022
Distant Supervised Centroid Shift: A Simple and Efficient Approach to Visual Domain Adaptation
J Liang, R He, Z Sun, T Tan
IEEE Conference on Computer Vision and Pattern Recognition, 2975-2984, 2019
1132019
A Comprehensive Survey on Test-Time Adaptation under Distribution Shifts
J Liang, R He, T Tan
arXiv preprint arXiv:2303.15361, 2023
762023
Mimicking the Oracle: An Initial Phase Decorrelation Approach for Class Incremental Learning
Y Shi, K Zhou, J Liang, Z Jiang, J Feng, P Torr, S Bai, VYF Tan
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern …, 2022
522022
Unleashing the Power of Contrastive Self-Supervised Visual Models via Contrast-Regularized Fine-Tuning
Y Zhang, B Hooi, D Hu, J Liang, J Feng
Annual Conference on Neural Information Processing Systems, 29848-29860, 2021
522021
Self-Paced Learning: an Implicit Regularization Perspective
Y Fan, R He, J Liang, BG Hu
AAAI Conference on Artificial Intelligence, 1877-1883, 2017
492017
Diagnostic Classification for Human Autism and Obsessive-Compulsive Disorder Based on Machine Learning From a Primate Genetic Model
Y Zhan, J Wei, J Liang, X Xu, R He, TW Robbins, Z Wang
American Journal of Psychiatry 178 (1), 65-76, 2021
462021
Learning Feature Recovery Transformer for Occluded Person Re-identification
B Xu, L He, J Liang, Z Sun
IEEE Transactions on Image Processing 31, 4651-4662, 2022
402022
Adversarial Domain Adaptation with Prototype-Based Normalized Output Conditioner
D Hu, J Liang, Q Hou, H Yan, Y Chen
IEEE Transactions on Image Processing 30, 9359-9371, 2021
39*2021
Self-Paced Cross-Modal Subspace Matching
J Liang, Z Li, D Cao, R He, J Wang
International ACM SIGIR conference on Research and Development in …, 2016
372016
Deep Semantic Reconstruction Hashing for Similarity Retrieval
Y Wang, X Ou, J Liang, Z Sun
IEEE Transactions on Circuits and Systems for Video Technology 31 (1), 387-400, 2021
362021
Masked Relation Learning for DeepFake Detection
Z Yang, J Liang, Y Xu, XY Zhang, R He
IEEE Transactions on Information Forensics and Security 18, 1696-1708, 2023
342023
Nie można teraz wykonać tej operacji. Spróbuj ponownie później.
Prace 1–20