Follow
H.A.M. Leymann (Alex)
H.A.M. Leymann (Alex)
Federal Office for Radiation Protection (BfS)
Verified email at bfs.de
Title
Cited by
Cited by
Year
Giant photon bunching, superradiant pulse emission and excitation trapping in quantum-dot nanolasers
F Jahnke, C Gies, M Aßmann, M Bayer, HAM Leymann, A Foerster, ...
Nature communications 7 (1), 11540, 2016
1642016
Sub-and superradiance in nanolasers
HAM Leymann, A Foerster, F Jahnke, J Wiersig, C Gies
Physical Review Applied 4 (4), 044018, 2015
942015
Intensity fluctuations in bimodal micropillar lasers enhanced by quantum-dot gain competition
HAM Leymann, C Hopfmann, F Albert, A Foerster, M Khanbekyan, ...
Physical Review A 87 (5), 053819, 2013
672013
Expectation value based equation-of-motion approach for open quantum systems: A general formalism
HAM Leymann, A Foerster, J Wiersig
Physical Review B 89 (8), 085308, 2014
602014
Exploring the Photon-Number Distribution of Bimodal Microlasers with a Transition Edge Sensor
E Schlottmann, M von Helversen, HAM Leymann, T Lettau, F Krüger, ...
Physical Review Applied 9 (6), 064030, 2018
532018
Pump-power-driven mode switching in a microcavity device and its relation to Bose-Einstein condensation
HAM Leymann, D Vorberg, T Lettau, C Hopfmann, C Schneider, M Kamp, ...
Physical Review X 7 (2), 021045, 2017
372017
Equation-of-motion technique for finite-size quantum-dot systems: Cluster expansion method
M Florian, C Gies, F Jahnke, HAM Leymann, J Wiersig
Physical Review B 87 (16), 165306, 2013
332013
Superthermal photon bunching in terms of simple probability distributions
T Lettau, HAM Leymann, B Melcher, J Wiersig
Physical Review A 97 (5), 053835, 2018
252018
Correlations between axial and lateral emission of coupled quantum dot–micropillar cavities
A Musiał, C Hopfmann, T Heindel, C Gies, M Florian, HAM Leymann, ...
Physical Review B 91 (20), 205310, 2015
192015
Unconventional collective normal-mode coupling in quantum-dot-based bimodal microlasers
M Khanbekyan, HAM Leymann, C Hopfmann, A Foerster, C Schneider, ...
Physical Review A 91 (4), 043840, 2015
192015
Effect of direct dissipative coupling of two competing modes on intensity fluctuations in a quantum-dot-microcavity laser
M Fanaei, A Foerster, HAM Leymann, J Wiersig
Physical Review A 94 (4), 043814, 2016
142016
Expectation value based cluster expansion
HAM Leymann, A Foerster, J Wiersig
physica status solidi (c) 10 (9), 1242-1245, 2013
122013
Computer-aided cluster expansion: An efficient algebraic approach for open quantum many-particle systems
A Foerster, HAM Leymann, J Wiersig
Computer Physics Communications 212, 210-219, 2017
102017
Controlled two-mode emission from the interplay of driving and thermalization in a dye-filled photonic cavity
M Vlaho, HAM Leymann, D Vorberg, A Eckardt
Physical Review Research 1 (3), 033191, 2019
72019
Theory of coherent optical nonlinearities of intersubband transitions in semiconductor quantum wells
R Cominotti, HAM Leymann, J Nespolo, JM Manceau, M Jeannin, ...
Physical Review B 107 (11), 115431, 2023
52023
Strong photon bunching in a quantum‐dot‐based two‐mode microcavity laser
HAM Leymann, A Foerster, M Khanbekyan, J Wiersig
physica status solidi (b) 250 (9), 1777-1780, 2013
42013
Simulation of complex dielectric materials
A Quandt, HAM Leymann
Advances in Science and Technology 71, 58-67, 2011
32011
Differences and similarities between lasing and multiple-photon subtracted states
T Lettau, HAM Leymann
Physical Review A 99 (2), 023815, 2019
2019
Pitfalls in the theory of carrier dynamics in semiconductor quantum dots: Single-particle basis versus the many-particle configuration basis
T Lettau, HAM Leymann, J Wiersig
Physical Review B 95 (8), 085314, 2017
2017
Giant Photon Bunching and Quantum Correlations in Superradiant Quantum-Dot Microcavity Lasers
Jan Wiersig, Alexander Foerster, Heinrich AM Leymann, Frank Jahnke ...
Conference on Lasers and Electro-Optics, FTu4E.8, 2017
2017
The system can't perform the operation now. Try again later.
Articles 1–20