Unsupervised representation learning with deep convolutional generative adversarial networks A Radford, L Metz, S Chintala arXiv preprint arXiv:1511.06434, 2015 | 12151 | 2015 |
Proximal policy optimization algorithms J Schulman, F Wolski, P Dhariwal, A Radford, O Klimov arXiv preprint arXiv:1707.06347, 2017 | 7402 | 2017 |
Improved techniques for training gans T Salimans, I Goodfellow, W Zaremba, V Cheung, A Radford, X Chen Advances in neural information processing systems 29, 2016 | 6638 | 2016 |
Language Models are Unsupervised Multitask Learners A Radford, J Wu, R Child, D Luan, D Amodei, I Sutskever Technical report, OpenAi, 2019 | 6630* | 2019 |
Improving language understanding by generative pre-training A Radford, K Narasimhan, T Salimans, I Sutskever | 4013* | 2018 |
Language models are few-shot learners T Brown, B Mann, N Ryder, M Subbiah, JD Kaplan, P Dhariwal, ... Advances in neural information processing systems 33, 1877-1901, 2020 | 3885 | 2020 |
Learning Transferable Visual Models From Natural Language Supervision A Radford, JW Kim, C Hallacy, A Ramesh, G Goh, S Agarwal, G Sastry, ... https://cdn.openai.com/papers …, 2021 | 1044 | 2021 |
Openai baselines P Dhariwal, C Hesse, O Klimov, A Nichol, M Plappert, A Radford, ... | 794 | 2017 |
Generating long sequences with sparse transformers R Child, S Gray, A Radford, I Sutskever arXiv preprint arXiv:1904.10509, 2019 | 632 | 2019 |
Stable baselines A Hill, A Raffin, M Ernestus, A Gleave, A Kanervisto, R Traore, P Dhariwal, ... | 592 | 2018 |
Generative pretraining from pixels M Chen, A Radford, R Child, J Wu, H Jun, D Luan, I Sutskever International Conference on Machine Learning, 1691-1703, 2020 | 462 | 2020 |
Zero-shot text-to-image generation A Ramesh, M Pavlov, G Goh, S Gray, C Voss, A Radford, M Chen, ... International Conference on Machine Learning, 8821-8831, 2021 | 405 | 2021 |
Learning to generate reviews and discovering sentiment A Radford, R Jozefowicz, I Sutskever arXiv preprint arXiv:1704.01444, 2017 | 405 | 2017 |
Scaling laws for neural language models J Kaplan, S McCandlish, T Henighan, TB Brown, B Chess, R Child, ... arXiv preprint arXiv:2001.08361, 2020 | 295 | 2020 |
Improving GANs using optimal transport T Salimans, H Zhang, A Radford, D Metaxas arXiv preprint arXiv:1803.05573, 2018 | 218 | 2018 |
Jukebox: A generative model for music P Dhariwal, H Jun, C Payne, JW Kim, A Radford, I Sutskever arXiv preprint arXiv:2005.00341, 2020 | 208 | 2020 |
Proximal policy optimization algorithms. arXiv 2017 J Schulman, F Wolski, P Dhariwal, A Radford, O Klimov arXiv preprint arXiv:1707.06347, 2017 | 170 | 2017 |
Better language models and their implications A Radford, J Wu, D Amodei, D Amodei, J Clark, M Brundage, I Sutskever OpenAI blog 1, 2, 2019 | 132 | 2019 |
Fine-tuning language models from human preferences DM Ziegler, N Stiennon, J Wu, TB Brown, A Radford, D Amodei, ... arXiv preprint arXiv:1909.08593, 2019 | 121 | 2019 |
Gpu kernels for block-sparse weights S Gray, A Radford, DP Kingma arXiv preprint arXiv:1711.09224 3, 2, 2017 | 121 | 2017 |