Obserwuj
Yann Dubois
Tytuł
Cytowane przez
Cytowane przez
Rok
Stanford alpaca: An instruction-following llama model
R Taori*, I Gulrajani*, T Zhang*, Y Dubois*, X Li*, C Guestrin, P Liang, ...
1869*2023
AlpacaEval: An automatic evaluator of instruction-following models
X Li*, T Zhang*, Y Dubois*, R Taori*, I Gulrajani, C Guestrin, P Liang, ...
2442023
AlpacaFarm: A Simulation Framework for Methods that Learn from Human Feedback
Y Dubois*, X Li*, R Taori*, T Zhang*, I Gulrajani, J Ba, C Guestrin, P Liang, ...
NeurIPS, 2023
2192023
Convolutional Conditional Neural Processes
J Gordon, WP Bruinsma, AYK Foong, J Requeima, Y Dubois, RE Turner
ICLR, 2020
1562020
Lossy Compression for Lossless Prediction
Y Dubois, B Bloem-Reddy, K Ullrich, CJ Maddison
NeurIPS, 2021
682021
Meta-Learning Stationary Stochastic Process Prediction with Convolutional Neural Processes
AYK Foong, WP Bruinsma, J Gordon, Y Dubois, J Requeima, RE Turner
NeurIPS, 2020
642020
Optimal Representations for Covariate Shifts
Y Ruan*, Y Dubois*, CJ Maddison
ICLR, 2021
622021
Is a Caption Worth a Thousand Images? A Controlled Study for Representation Learning
S Santurkar, Y Dubois, R Taori, P Liang, T Hashimoto
ICLR, 2022
44*2022
Learning Optimal Representations with the Decodable Information Bottleneck
Y Dubois, D Kiela, DJ Schwab, R Vedantam
NeurIPS, 2020
392020
Improving Self-Supervised Learning by Characterizing Idealized Representations
Y Dubois, T Hashimoto, S Ermon, P Liang
NeurIPS, 2022
332022
Location Attention for Extrapolation to Longer Sequences
Y Dubois, G Dagan, D Hupkes, E Bruni
ACL, 2019
302019
Neural process family
Y Dubois, J Gordon, AY Foong
yanndubs.github.io/Neural-Process-Family, 2020
292020
Length-Controlled AlpacaEval: A Simple Way to Debias Automatic Evaluators
Y Dubois, B Galambosi, P Liang, TB Hashimoto
arXiv preprint arXiv:2404.04475, 2024
262024
Identifying the Risks of LM Agents with an LM-Emulated Sandbox
Y Ruan, H Dong, A Wang, S Pitis, Y Zhou, J Ba, Y Dubois, CJ Maddison, ...
ICLR, 2023
232023
Learning Instance-Specific Augmentations by Capturing Local Invariances
N Miao, T Rainforth, E Mathieu, Y Dubois, YW Teh, A Foster, H Kim
ICML, 2022
112022
Evaluating Self-Supervised Learning via Risk Decomposition
Y Dubois, T Hashimoto, P Liang
ICML, 2023
42023
Revisiting Associative Compression: I Can’t Believe It’s Not Better
W Xu, MJ Muckley, Y Dubois, K Ullrich
Conditional Neural Processes for Semi-Supervised Learning
Y Dubois, RE Turner
Understanding Disentangling in VAE
Y Dubois, A Kastanos, D Lines, B Melman
Nie można teraz wykonać tej operacji. Spróbuj ponownie później.
Prace 1–19