Obserwuj
Andreas Eitel
Andreas Eitel
Parallel Domain. Previously Univ Freiburg PhD
Zweryfikowany adres z cs.uni-freiburg.de - Strona główna
Tytuł
Cytowane przez
Cytowane przez
Rok
Multimodal Deep Learning for Robust RGB-D Object Recognition
A Eitel, JT Springenberg, L Spinello, M Riedmiller, W Burgard
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2015
8272015
Choosing Smartly: Adaptive Multimodal Fusion for Object Detection in Changing Environments
O Mees, A Eitel, W Burgard
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2016
1382016
The freiburg groceries dataset
P Jund, N Abdo, A Eitel, W Burgard
arXiv preprint arXiv:1611.05799, 2016
942016
Learning to Singulate Objects using a Push Proposal Network
A Eitel, N Hauff, W Burgard
International Symposium on Robotics Research (ISRR), 2017
922017
Deep detection of people and their mobility aids for a hospital robot
A Vasquez, M Kollmitz, A Eitel, W Burgard
2017 European Conference on Mobile Robots (ECMR), 1-7, 2017
472017
Deep 3D perception of people and their mobility aids
M Kollmitz, A Eitel, A Vasquez, W Burgard
Robotics and Autonomous Systems 114, 29-40, 2019
392019
Adaptive curriculum generation from demonstrations for sim-to-real visuomotor control
L Hermann, M Argus, A Eitel, A Amiranashvili, W Burgard, T Brox
2020 IEEE International Conference on Robotics and Automation (ICRA), 6498-6505, 2020
322020
Optimization beyond the convolution: Generalizing spatial relations with end-to-end metric learning
P Jund, A Eitel, N Abdo, W Burgard
2018 IEEE International Conference on Robotics and Automation (ICRA), 4510-4516, 2018
222018
Improving unimodal object recognition with multimodal contrastive learning
J Meyer, A Eitel, T Brox, W Burgard
2020 IEEE/RSJ International Conference on Intelligent Robots and Systems …, 2020
212020
Self-supervised transfer learning for instance segmentation through physical interaction
A Eitel, N Hauff, W Burgard
2019 IEEE/RSJ International Conference on Intelligent Robots and Systems …, 2019
202019
From plants to landmarks: Time-invariant plant localization that uses deep pose regression in agricultural fields
F Kraemer, A Schaefer, A Eitel, J Vertens, W Burgard
arXiv preprint arXiv:1709.04751, 2017
202017
Perspectives on Deep Multimodel Robot Learning
W Burgard, A Valada, N Radwan, T Naseer, J Zhang, J Vertens, O Mees, ...
Robotics Research, 17-24, 2020
112020
Learning for Interaction with Objects
A Eitel
Albert-Ludwigs-Universität Freiburg, 2020
2020
Nie można teraz wykonać tej operacji. Spróbuj ponownie później.
Prace 1–13