Obserwuj
Abir De
Abir De
Assistant Professor, CSE, IIT Bombay
Zweryfikowany adres z cse.iitb.ac.in - Strona główna
Tytuł
Cytowane przez
Cytowane przez
Rok
Nevae: A deep generative model for molecular graphs
B Samanta, A De, G Jana, V Gómez, PK Chattaraj, N Ganguly, ...
The Journal of Machine Learning Research 21 (1), 4556-4588, 2020
2372020
Enhancing human learning via spaced repetition optimization
B Tabibian, U Upadhyay, A De, A Zarezade, B Schölkopf, ...
Proceedings of the National Academy of Sciences 116 (10), 3988-3993, 2019
2082019
Grad-match: Gradient matching based data subset selection for efficient deep model training
K Killamsetty, S Durga, G Ramakrishnan, A De, R Iyer
International Conference on Machine Learning, 5464-5474, 2021
1912021
Learning and forecasting opinion dynamics in social networks
A De, I Valera, N Ganguly, S Bhattacharya, M Gomez Rodriguez
Advances in neural information processing systems 29, 2016
136*2016
Deep reinforcement learning of marked temporal point processes
U Upadhyay, A De, M Gomez Rodriguez
Advances in neural information processing systems 31, 2018
1312018
Learning a linear influence model from transient opinion dynamics
A De, S Bhattacharya, P Bhattacharya, N Ganguly, S Chakrabarti
Proceedings of the 23rd ACM International Conference on Conference on …, 2014
90*2014
Regression under human assistance
A De, P Koley, N Ganguly, M Gomez-Rodriguez
Proceedings of the AAAI Conference on Artificial Intelligence 34 (03), 2611-2620, 2020
692020
Knowlywood: Mining activity knowledge from hollywood narratives
N Tandon, G De Melo, A De, G Weikum
Proceedings of the 24th ACM International on Conference on Information and …, 2015
622015
Differentiable learning under triage
N Okati, A De, M Rodriguez
Advances in Neural Information Processing Systems 34, 9140-9151, 2021
602021
Classification under human assistance
A De, N Okati, A Zarezade, MG Rodriguez
Proceedings of the AAAI Conference on Artificial Intelligence 35 (7), 5905-5913, 2021
582021
Designing random graph models using variational autoencoders with applications to chemical design
B Samanta, A De, N Ganguly, M Gomez-Rodriguez
arXiv preprint arXiv:1802.05283, 2018
552018
Counterfactual explanations in sequential decision making under uncertainty
S Tsirtsis, A De, M Rodriguez
Advances in Neural Information Processing Systems 34, 30127-30139, 2021
462021
Discriminative link prediction using local, community, and global signals
A De, S Bhattacharya, S Sarkar, N Ganguly, S Chakrabarti
IEEE Transactions on Knowledge and Data Engineering 28 (8), 2057-2070, 2016
432016
Learning temporal point processes with intermittent observations
V Gupta, S Bedathur, S Bhattacharya, A De
International Conference on Artificial Intelligence and Statistics, 3790-3798, 2021
31*2021
Steering Social Activity: A Stochastic Optimal Control Point Of View.
A Zarezade, A De, U Upadhyay, HR Rabiee, M Gomez-Rodriguez
Journal of Machine Learning Research 18, 205:1-205:35, 2017
302017
Training data subset selection for regression with controlled generalization error
S Durga, R Iyer, G Ramakrishnan, A De
International Conference on Machine Learning, 9202-9212, 2021
292021
Interpretable neural subgraph matching for graph retrieval
I Roy, VSBR Velugoti, S Chakrabarti, A De
Proceedings of the AAAI conference on artificial intelligence 36 (7), 8115-8123, 2022
262022
Demarcating endogenous and exogenous opinion dynamics: An experimental design approach
P Koley, A Saha, S Bhattacharya, N Ganguly, A De
ACM Transactions on Knowledge Discovery from Data (TKDD) 15 (6), 1-25, 2021
23*2021
Learning to switch between machines and humans
VB Meresht, A De, A Singla, M Gomez-Rodriguez
arXiv preprint arXiv:2002.04258, 2020
232020
Training for the future: A simple gradient interpolation loss to generalize along time
A Nasery, S Thakur, V Piratla, A De, S Sarawagi
Advances in Neural Information Processing Systems 34, 19198-19209, 2021
222021
Nie można teraz wykonać tej operacji. Spróbuj ponownie później.
Prace 1–20