Obserwuj
Agustinus Kristiadi
Agustinus Kristiadi
Postdoc, Vector Institute
Zweryfikowany adres z vectorinstitute.ai - Strona główna
Tytuł
Cytowane przez
Cytowane przez
Rok
Being Bayesian, Even Just a Bit, Fixes Overconfidence in ReLU Networks
A Kristiadi, M Hein, P Hennig
ICML 2020, 2020
1652020
Laplace Redux--Effortless Bayesian Deep Learning
E Daxberger*, A Kristiadi*, A Immer*, R Eschenhagen*, M Bauer, ...
NeurIPS 2021, 2021
1072021
Incorporating literals into knowledge graph embeddings
A Kristiadi*, MA Khan*, D Lukovnikov, J Lehmann, A Fischer
ISWC 2019, 2019
852019
Improving Response Selection in Multi-Turn Dialogue Systems by Incorporating Domain Knowledge
D Chaudhuri, A Kristiadi, J Lehmann, A Fischer
CoNLL 2018, 2018
262018
Learnable Uncertainty under Laplace Approximations
A Kristiadi, M Hein, P Hennig
UAI 2021, 2021
162021
Fast predictive uncertainty for classification with Bayesian deep networks
M Hobbhahn, A Kristiadi, P Hennig
UAI 2022, 2022
142022
Deep Convolutional Level Set Method for Image Segmentation.
A Kristiadi
Journal of ICT Research & Applications 11 (3), 2017
142017
An Infinite-Feature Extension for Bayesian ReLU Nets That Fixes Their Asymptotic Overconfidence
A Kristiadi, M Hein, P Hennig
NeurIPS 2021, 2021
11*2021
Mixtures of Laplace Approximations for Improved Post-Hoc Uncertainty in Deep Learning
R Eschenhagen, E Daxberger, P Hennig, A Kristiadi
Bayesian Deep Learning Workshop, NeurIPS 2021, 2021
102021
Predictive uncertainty quantification with compound density networks
A Kristiadi, S Däubener, A Fischer
Bayesian Deep Learning Workshop, NeurIPS 2019, 2019
102019
Being a Bit Frequentist Improves Bayesian Neural Networks
A Kristiadi, M Hein, P Hennig
AISTATS 2022, 2022
42022
Parallel particle swarm optimization for image segmentation
A Kristiadi, P Mudjihartono
Universitas Atma Jaya Yogyakarta, 2013
42013
Discovering Inductive Bias with Gibbs Priors: A Diagnostic Tool for Approximate Bayesian Inference
L Rendsburg, A Kristiadi, P Hennig, U von Luxburg
AISTATS 2022, 2022
22022
Promises and Pitfalls of the Linearized Laplace in Bayesian Optimization
A Kristiadi, A Immer, R Eschenhagen, V Fortuin
arXiv preprint arXiv:2304.08309, 2023
2023
The Geometry of Neural Nets' Parameter Spaces Under Reparametrization
A Kristiadi, F Dangel, P Hennig
arXiv preprint arXiv:2302.07384, 2023
2023
Low-Cost Bayesian Methods for Fixing Neural Networks' Overconfidence
A Kristiadi
Universität Tübingen, 2023
2023
Posterior Refinement Improves Sample Efficiency in Bayesian Neural Networks
A Kristiadi, R Eschenhagen, P Hennig
NeurIPS 2022, 2022
2022
Nie można teraz wykonać tej operacji. Spróbuj ponownie później.
Prace 1–17