Obserwuj
Shankar Sankararaman
Shankar Sankararaman
Data Scientist and Machine Learning, Intuit
Zweryfikowany adres z intuit.com - Strona główna
Tytuł
Cytowane przez
Cytowane przez
Rok
Uncertainty Quantification and Model Validation of Fatigue Crack Growth Prediction
S Sankararaman, Y Ling, S Mahadevan
Engineering Fracture Mechanics 78 (7), 1487-1504, 2011
2522011
Forecasting fault events for predictive maintenance using data-driven techniques and ARMA modeling
M Baptista, S Sankararaman, IP de Medeiros, C Nascimento Jr, ...
Computers & Industrial Engineering 115, 41-53, 2018
2512018
Significance, interpretation, and quantification of uncertainty in prognostics and remaining useful life prediction
S Sankararaman
Mechanical Systems and Signal Processing 52, 228-247, 2015
1762015
Likelihood-based representation of epistemic uncertainty due to sparse point data and/or interval data
S Sankararaman, S Mahadevan
Reliability Engineering & System Safety 96 (7), 814-824, 2011
1712011
Resilience-based network design under uncertainty
X Zhang, S Mahadevan, S Sankararaman, K Goebel
Reliability Engineering & System Safety 169, 364-379, 2018
1482018
Separating the contributions of variability and parameter uncertainty in probability distributions
S Sankararaman, S Mahadevan
Reliability Engineering & System Safety 112, 187-199, 2013
1402013
Integration of model verification, validation, and calibration for uncertainty quantification in engineering systems
S Sankararaman, S Mahadevan
Reliability Engineering & System Safety 138, 194-209, 2015
1392015
Uncertainty quantification in remaining useful life prediction using first-order reliability methods
S Sankararaman, MJ Daigle, K Goebel
IEEE Transactions on Reliability 63 (2), 603-619, 2014
1302014
Prognostics: The science of making predictions
K Goebel, MJ Daigle, A Saxena, I Roychoudhury, S Sankararaman, ...
1102017
Concepts of Airspace Structures and System Analysis for UAS Traffic flows for Urban Areas
DS Jang, CA Ippolito, S Sankararaman, V Stepanyan
AIAA Information Systems-AIAA Infotech@ Aerospace, 0449, 2017
1022017
Bayesian methodology for diagnosis uncertainty quantification and health monitoring
S Sankararaman, S Mahadevan
Structural Control and Health Monitoring, 2011
932011
A neural network filtering approach for similarity-based remaining useful life estimation
O Bektas, JA Jones, S Sankararaman, I Roychoudhury, K Goebel
The International Journal of Advanced Manufacturing Technology 101 (1), 87-103, 2019
912019
Condition-based prediction of time-dependent reliability in composites
J Chiachío, M Chiachío, S Sankararaman, A Saxena, K Goebel
Reliability Engineering & System Safety 142, 134-147, 2015
902015
Model validation under epistemic uncertainty
S Sankararaman, S Mahadevan
Reliability Engineering & System Safety 96 (9), 1232-1241, 2011
892011
Why is the Remaining Useful Life Prediction Uncertain?
S Sankararaman, K Goebel
Annual Conference of the Pr ognostics and Health Management Society, USA, 2013
882013
Uncertainty in prognostics and systems health management
S Sankararaman, K Goebel
International journal of prognostics and health management 6 (4), 2015
802015
Uncertainty in prognostics and systems health management
S Sankararaman, K Goebel
International journal of prognostics and health management 6 (4), 2015
802015
Bayesian model selection and parameter estimation for fatigue damage progression models in composites
J Chiachío, M Chiachío, A Saxena, S Sankararaman, G Rus, K Goebel
International Journal of Fatigue 70, 361-373, 2015
782015
Likelihood-based approach to multidisciplinary analysis under uncertainty
S Sankararaman, S Mahadevan
772012
Methodologies for system-level remaining useful life prediction
H Khorasgani, G Biswas, S Sankararaman
Reliability Engineering & System Safety 154, 8-18, 2016
752016
Nie można teraz wykonać tej operacji. Spróbuj ponownie później.
Prace 1–20