Anne-Katrin Mahlein
Anne-Katrin Mahlein
Institute of Sugar Beet Reserach, Göttingen
Zweryfikowany adres z - Strona główna
Cytowane przez
Cytowane przez
Early detection and classification of plant diseases with support vector machines based on hyperspectral reflectance
T Rumpf, AK Mahlein, U Steiner, EC Oerke, HW Dehne, L Plümer
Computers and electronics in agriculture 74 (1), 91-99, 2010
Plant disease detection by imaging sensors–parallels and specific demands for precision agriculture and plant phenotyping
AK Mahlein
Plant disease 100 (2), 241-251, 2016
Recent advances in sensing plant diseases for precision crop protection
AK Mahlein, EC Oerke, U Steiner, HW Dehne
European Journal of Plant Pathology 133 (1), 197-209, 2012
Development of spectral indices for detecting and identifying plant diseases
AK Mahlein, T Rumpf, P Welke, HW Dehne, L Plümer, U Steiner, ...
Remote Sensing of Environment 128, 21-30, 2013
Hyperspectral imaging for small-scale analysis of symptoms caused by different sugar beet diseases
AK Mahlein, U Steiner, C Hillnhütter, HW Dehne, EC Oerke
Plant methods 8 (1), 1-13, 2012
Low-cost 3D systems: suitable tools for plant phenotyping
S Paulus, J Behmann, AK Mahlein, L Plümer, H Kuhlmann
Sensors 14 (2), 3001-3018, 2014
Spectral signatures of sugar beet leaves for the detection and differentiation of diseases
AK Mahlein, U Steiner, HW Dehne, EC Oerke
Precision agriculture 11 (4), 413-431, 2010
A review of advanced machine learning methods for the detection of biotic stress in precision crop protection
J Behmann, AK Mahlein, T Rumpf, C Römer, L Plümer
Precision Agriculture 16 (3), 239-260, 2015
Surface feature based classification of plant organs from 3D laserscanned point clouds for plant phenotyping
S Paulus, J Dupuis, AK Mahlein, H Kuhlmann
BMC bioinformatics 14 (1), 1-12, 2013
Hyperspectral phenotyping on the microscopic scale: towards automated characterization of plant-pathogen interactions
M Kuska, M Wahabzada, M Leucker, HW Dehne, K Kersting, EC Oerke, ...
Plant methods 11 (1), 1-15, 2015
Remote sensing to detect plant stress induced by Heterodera schachtii and Rhizoctonia solani in sugar beet fields
C Hillnhütter, AK Mahlein, RA Sikora, EC Oerke
Field Crops Research 122 (1), 70-77, 2011
Benefits of hyperspectral imaging for plant disease detection and plant protection: a technical perspective
S Thomas, MT Kuska, D Bohnenkamp, A Brugger, E Alisaac, ...
Journal of Plant Diseases and Protection 125 (1), 5-20, 2018
Metro maps of plant disease dynamics—automated mining of differences using hyperspectral images
M Wahabzada, AK Mahlein, C Bauckhage, U Steiner, EC Oerke, ...
Plos one 10 (1), e0116902, 2015
Plant phenotyping using probabilistic topic models: uncovering the hyperspectral language of plants
M Wahabzada, AK Mahlein, C Bauckhage, U Steiner, EC Oerke, ...
Scientific reports 6 (1), 1-11, 2016
Hyperspectral sensors and imaging technologies in phytopathology: state of the art
AK Mahlein, MT Kuska, J Behmann, G Polder, A Walter
Annual review of phytopathology 56, 535-558, 2018
Fusion of sensor data for the detection and differentiation of plant diseases in cucumber
CA Berdugo, R Zito, S Paulus, AK Mahlein
Plant pathology 63 (6), 1344-1356, 2014
Airborne hyperspectral imaging of spatial soil organic carbon heterogeneity at the field-scale
C Hbirkou, S Pätzold, AK Mahlein, G Welp
Geoderma 175, 21-28, 2012
Specim IQ: evaluation of a new, miniaturized handheld hyperspectral camera and its application for plant phenotyping and disease detection
J Behmann, K Acebron, D Emin, S Bennertz, S Matsubara, S Thomas, ...
Sensors 18 (2), 441, 2018
Automated interpretation of 3D laserscanned point clouds for plant organ segmentation
M Wahabzada, S Paulus, K Kersting, AK Mahlein
BMC bioinformatics 16 (1), 1-11, 2015
Generation and application of hyperspectral 3D plant models: methods and challenges
J Behmann, AK Mahlein, S Paulus, J Dupuis, H Kuhlmann, EC Oerke, ...
Machine Vision and Applications 27 (5), 611-624, 2016
Nie można teraz wykonać tej operacji. Spróbuj ponownie później.
Prace 1–20