Jungwook Choi
Cytowane przez
Cytowane przez
Pact: Parameterized clipping activation for quantized neural networks
J Choi, Z Wang, S Venkataramani, PIJ Chuang, V Srinivasan, ...
arXiv preprint arXiv:1805.06085, 2018
Training deep neural networks with 8-bit floating point numbers
N Wang, J Choi, D Brand, CY Chen, K Gopalakrishnan
Proceedings of the 32nd International Conference on Neural Information …, 2018
Adacomp: Adaptive residual gradient compression for data-parallel distributed training
CY Chen, J Choi, D Brand, A Agrawal, W Zhang, K Gopalakrishnan
Proceedings of the AAAI Conference on Artificial Intelligence 32 (1), 2018
A scalable multi-TeraOPS deep learning processor core for AI trainina and inference
B Fleischer, S Shukla, M Ziegler, J Silberman, J Oh, V Srinivasan, J Choi, ...
2018 IEEE Symposium on VLSI Circuits, 35-36, 2018
Accurate and Efficient 2-bit Quantized Neural Networks
J Choi, S Venkataramani, V Srinivasan, K Gopalakrishnan, Z Wang, ...
The Conference on Systems and Machine Learning (SysML), 2019
Approximate computing: Challenges and opportunities
A Agrawal, J Choi, K Gopalakrishnan, S Gupta, R Nair, J Oh, DA Prener, ...
2016 IEEE International Conference on Rebooting Computing (ICRC), 1-8, 2016
Hybrid 8-bit floating point (HFP8) training and inference for deep neural networks
X Sun, J Choi, CY Chen, N Wang, S Venkataramani, X Cui, W Zhang, ...
A real-time FPGA-based 20 000-word speech recognizer with optimized DRAM access
YK Choi, K You, J Choi, W Sung
IEEE Transactions on Circuits and Systems I: Regular Papers 57 (8), 2119-2131, 2010
Exploiting approximate computing for deep learning acceleration
CY Chen, J Choi, K Gopalakrishnan, V Srinivasan, S Venkataramani
2018 Design, Automation & Test in Europe Conference & Exhibition (DATE), 821-826, 2018
Bridging the accuracy gap for 2-bit quantized neural networks (qnn)
J Choi, PIJ Chuang, Z Wang, S Venkataramani, V Srinivasan, ...
arXiv preprint arXiv:1807.06964, 2018
PROMISE: An end-to-end design of a programmable mixed-signal accelerator for machine-learning algorithms
P Srivastava, M Kang, SK Gonugondla, S Lim, J Choi, V Adve, NS Kim, ...
2018 ACM/IEEE 45th Annual International Symposium on Computer Architecture …, 2018
Robust machine learning systems: Challenges, current trends, perspectives, and the road ahead
M Shafique, M Naseer, T Theocharides, C Kyrkou, O Mutlu, L Orosa, ...
IEEE Design & Test 37 (2), 30-57, 2020
Compensated-DNN: Energy efficient low-precision deep neural networks by compensating quantization errors
S Jain, S Venkataramani, V Srinivasan, J Choi, P Chuang, L Chang
2018 55th ACM/ESDA/IEEE Design Automation Conference (DAC), 1-6, 2018
An FPGA implementation of speech recognition with weighted finite state transducers
J Choi, K You, W Sung
2010 IEEE International Conference on Acoustics, Speech and Signal …, 2010
Video-rate stereo matching using Markov random field TRW-S inference on a hybrid CPU+ FPGA computing platform
J Choi, RA Rutenbar
IEEE Transactions on Circuits and Systems for Video Technology 26 (2), 385-398, 2015
DLFloat: A 16-bit Floating Point Format Designed for Deep Learning Training and Inference
A Agrawal, SM Mueller, BM Fleischer, J Choi, N Wang, X Sun, ...
26th IEEE Symposium on Computer Arithmetic, 2019
Hardware implementation of MRF map inference on an FPGA platform
J Choi, RA Rutenbar
22nd International Conference on Field Programmable Logic and Applications …, 2012
Accumulation bit-width scaling for ultra-low precision training of deep networks
C Sakr, N Wang, CY Chen, J Choi, A Agrawal, N Shanbhag, ...
arXiv preprint arXiv:1901.06588, 2019
Error resilient MRF message passing architecture for stereo matching
J Choi, EP Kim, RA Rutenbar, NR Shanbhag
SiPS 2013 Proceedings, 348-353, 2013
VLSI for 5000-word continuous speech recognition
Y Choi, K You, J Choi, W Sung
2009 IEEE International Conference on Acoustics, Speech and Signal …, 2009
Nie można teraz wykonać tej operacji. Spróbuj ponownie później.
Prace 1–20