Obserwuj
Fengwei Wang
Fengwei Wang
Zweryfikowany adres z xidian.edu.cn
Tytuł
Cytowane przez
Cytowane przez
Rok
CINEMA: Efficient and privacy-preserving online medical primary diagnosis with skyline query
J Hua, H Zhu, F Wang, X Liu, R Lu, H Li, Y Zhang
IEEE Internet of Things Journal 6 (2), 1450-1461, 2018
682018
A privacy-preserving and non-interactive federated learning scheme for regression training with gradient descent
F Wang, H Zhu, R Lu, Y Zheng, H Li
Information Sciences 552, 183-200, 2021
592021
PVD-FL: A privacy-preserving and verifiable decentralized federated learning framework
J Zhao, H Zhu, F Wang, R Lu, Z Liu, H Li
IEEE Transactions on Information Forensics and Security 17, 2059-2073, 2022
522022
CREDO: Efficient and privacy-preserving multi-level medical pre-diagnosis based on ML-kNN
D Zhu, H Zhu, X Liu, H Li, F Wang, H Li, D Feng
Information Sciences 514, 244-262, 2020
412020
Efficient and privacy-preserving dynamic spatial query scheme for ride-hailing services
F Wang, H Zhu, X Liu, R Lu, F Li, H Li, S Zhang
IEEE Transactions on Vehicular Technology 67 (11), 11084-11097, 2018
412018
Efficient and privacy-preserving proximity detection schemes for social applications
H Zhu, F Wang, R Lu, F Liu, G Fu, H Li
IEEE Internet of Things Journal 5 (4), 2947-2957, 2017
402017
CAMPS: Efficient and privacy-preserving medical primary diagnosis over outsourced cloud
J Hua, G Shi, H Zhu, F Wang, X Liu, H Li
Information Sciences 527, 560-575, 2020
272020
Security and privacy threats to federated learning: Issues, methods, and challenges
J Zhang, H Zhu, F Wang, J Zhao, Q Xu, H Li
Security and Communication Networks 2022, 2022
262022
FedSky: An efficient and privacy-preserving scheme for federated mobile crowdsensing
X Zhang, R Lu, J Shao, F Wang, H Zhu, AA Ghorbani
IEEE Internet of Things Journal 9 (7), 5344-5356, 2021
262021
Privacy-preserving collaborative model learning scheme for E-healthcare
F Wang, H Zhu, X Liu, R Lu, J Hua, H Li, H Li
IEEE Access 7, 166054-166065, 2019
242019
CORK: A privacy-preserving and lossless federated learning scheme for deep neural network
J Zhao, H Zhu, F Wang, R Lu, H Li, J Tu, J Shen
Information Sciences 603, 190-209, 2022
212022
Achieve efficient and privacy-preserving disease risk assessment over multi-outsourced vertical datasets
F Wang, H Zhu, R Lu, Y Zheng, H Li
IEEE Transactions on Dependable and Secure Computing 19 (3), 1492-1504, 2020
212020
PMRQ: Achieving efficient and privacy-preserving multidimensional range query in eHealthcare
Y Zheng, R Lu, S Zhang, Y Guan, J Shao, F Wang, H Zhu
IEEE Internet of Things Journal 9 (18), 17468-17479, 2022
182022
DLP: Achieve customizable location privacy with deceptive dummy techniques in LBS applications
J Tang, H Zhu, R Lu, X Lin, H Li, F Wang
IEEE Internet of Things Journal 9 (9), 6969-6984, 2021
182021
Setrknn: Efficient and privacy-preserving set reverse knn query in cloud
Y Zheng, R Lu, H Zhu, S Zhang, Y Guan, J Shao, F Wang, H Li
IEEE Transactions on Information Forensics and Security 18, 888-903, 2022
142022
Achieve efficient and privacy-preserving medical primary diagnosis based on kNN
D Zhu, H Zhu, X Liu, H Li, F Wang, H Li
2018 27th International Conference on Computer Communication and Networks …, 2018
122018
MASK: Efficient and privacy-preserving m-tree based biometric identification over cloud
X Yang, H Zhu, F Wang, S Zhang, R Lu, H Li
Peer-to-Peer Networking and Applications 14 (4), 2171-2186, 2021
82021
SGBoost: An efficient and privacy-preserving vertical federated tree boosting framework
J Zhao, H Zhu, W Xu, F Wang, R Lu, H Li
IEEE Transactions on Information Forensics and Security 18, 1022-1036, 2022
72022
ACCEL: An efficient and privacy-preserving federated logistic regression scheme over vertically partitioned data
J Zhao, H Zhu, F Wang, R Lu, H Li, Z Zhou, H Wan
Science China. Information Sciences 65 (7), 170307, 2022
72022
VFLR: An efficient and privacy-preserving vertical federated framework for logistic regression
J Zhao, H Zhu, F Wang, R Lu, E Wang, L Li, H Li
IEEE Transactions on Cloud Computing, 2023
62023
Nie można teraz wykonać tej operacji. Spróbuj ponownie później.
Prace 1–20