Gautam Kunapuli
Cytowane przez
Cytowane przez
On the global solution of linear programs with linear complementarity constraints
J Hu, JE Mitchell, JS Pang, KP Bennett, G Kunapuli
SIAM Journal on Optimization 19 (1), 445-471, 2008
Multi-agent inverse reinforcement learning
S Natarajan, G Kunapuli, K Judah, P Tadepalli, K Kersting, J Shavlik
2010 Ninth International Conference on Machine Learning and Applications …, 2010
Classification model selection via bilevel programming
G Kunapuli, KP Bennett, J Hu, JS Pang
Optimization Methods & Software 23 (4), 475-489, 2008
Model selection via bilevel optimization
KP Bennett, J Hu, X Ji, G Kunapuli, JS Pang
The 2006 IEEE International Joint Conference on Neural Network Proceedings …, 2006
Bilevel optimization and machine learning
KP Bennett, G Kunapuli, J Hu, JS Pang
IEEE World Congress on Computational Intelligence, 25-47, 2008
Mirror descent for metric learning: A unified approach
G Kunapuli, J Shavlik
Joint European Conference on Machine Learning and Knowledge Discovery in …, 2012
Bilevel model selection for support vector machines
G Kunapuli, KP Bennett, J Hu, JS Pang
Data mining and mathematical programming 45, 129-158, 2008
Guiding autonomous agents to better behaviors through human advice
G Kunapuli, P Odom, JW Shavlik, S Natarajan
2013 IEEE 13th international conference on data mining, 409-418, 2013
Online knowledge-based support vector machines
G Kunapuli, KP Bennett, A Shabbeer, R Maclin, J Shavlik
Joint European Conference on Machine Learning and Knowledge Discovery in …, 2010
Learning from imbalanced data in relational domains: A soft margin approach
S Yang, T Khot, K Kersting, G Kunapuli, K Hauser, S Natarajan
2014 IEEE International Conference on Data Mining, 1085-1090, 2014
Classification of burn injury using Raman spectroscopy and optical coherence tomography: An ex-vivo study on porcine skin
LP Rangaraju, G Kunapuli, D Every, OD Ayala, P Ganapathy, ...
Burns 45 (3), 659-670, 2019
A decision-support tool for renal mass classification
G Kunapuli, BA Varghese, P Ganapathy, B Desai, S Cen, M Aron, I Gill, ...
Journal of digital imaging 31 (6), 929-939, 2018
Relational restricted boltzmann machines: A probabilistic logic learning approach
N Kaur, G Kunapuli, T Khot, K Kersting, W Cohen, S Natarajan
International Conference on Inductive Logic Programming, 94-111, 2017
Drug‐drug interaction discovery: kernel learning from heterogeneous similarities
DS Dhami, G Kunapuli, M Das, D Page, S Natarajan
Smart Health 9, 88-100, 2018
Structure learning for relational logistic regression: An ensemble approach
N Ramanan, G Kunapuli, T Khot, B Fatemi, SM Kazemi, D Poole, ...
Data Mining and Knowledge Discovery, 1-23, 2021
Fast relational probabilistic inference and learning: Approximate counting via hypergraphs
M Das, DS Dhami, G Kunapuli, K Kersting, S Natarajan
Proceedings of the AAAI Conference on Artificial Intelligence 33 (01), 7816-7824, 2019
Automating the ILP setup task: Converting user advice about specific examples into general background knowledge
T Walker, C O’Reilly, G Kunapuli, S Natarajan, R Maclin, D Page, ...
International Conference on Inductive Logic Programming, 253-268, 2010
A bilevel optimization approach to machine learning
G Kunapuli
Rensselaer Polytechnic Institute, 2008
Advice refinement in knowledge-based svms
G Kunapuli, R Maclin, J Shavlik
Advances in neural information processing systems 24, 1728-1736, 2011
The adviceptron: Giving advice to the perceptron
G Kunapuli, KP Bennett, R Maclin, JW Shavlik
Proceedings of the Conference on Artificial Neural Networks In Engineering …, 2010
Nie można teraz wykonać tej operacji. Spróbuj ponownie później.
Prace 1–20