Obserwuj
Dávid Pál
Dávid Pál
Staff Machine Learning Engineer, Instacart
Zweryfikowany adres z instacart.com - Strona główna
Tytuł
Cytowane przez
Cytowane przez
Rok
Improved algorithms for linear stochastic bandits
Y Abbasi-Yadkori, D Pál, C Szepesvári
Advances in neural information processing systems 24, 2011
18752011
Impossibility theorems for domain adaptation
SB David, T Lu, T Luu, D Pál
Proceedings of the Thirteenth International Conference on Artificial …, 2010
3292010
Contextual multi-armed bandits
T Lu, D Pál, M Pál
Proceedings of the Thirteenth international conference on Artificial …, 2010
3282010
A sober look at clustering stability
S Ben-David, U Von Luxburg, D Pál
Learning Theory: 19th Annual Conference on Learning Theory, COLT 2006 …, 2006
3232006
Estimation of Rényi entropy and mutual information based on generalized nearest-neighbor graphs
D Pál, B Póczos, C Szepesvári
Advances in neural information processing systems 23, 2010
1912010
Online-to-confidence-set conversions and application to sparse stochastic bandits
Y Abbasi-Yadkori, D Pal, C Szepesvari
Artificial Intelligence and Statistics, 1-9, 2012
1812012
Agnostic Online Learning.
S Ben-David, D Pál, S Shalev-Shwartz
COLT 3, 1, 2009
1802009
Does Unlabeled Data Provably Help? Worst-case Analysis of the Sample Complexity of Semi-Supervised Learning.
S Ben-David, T Lu, D Pál
COLT, 33-44, 2008
1652008
Coin betting and parameter-free online learning
F Orabona, D Pál
Advances in Neural Information Processing Systems 29, 2016
1482016
General auction mechanism for search advertising
G Aggarwal, S Muthukrishnan, D Pál, M Pál
Proceedings of the 18th international conference on World wide web, 241-250, 2009
1352009
Partial monitoring—classification, regret bounds, and algorithms
G Bartók, DP Foster, D Pál, A Rakhlin, C Szepesvári
Mathematics of Operations Research 39 (4), 967-997, 2014
1342014
Stability of k-Means Clustering
S Ben-David, D Pál, HU Simon
Learning Theory: 20th Annual Conference on Learning Theory, COLT 2007, San …, 2007
1232007
Scale-free online learning
F Orabona, D Pál
Theoretical Computer Science 716, 50-69, 2018
932018
Online least squares estimation with self-normalized processes: An application to bandit problems
Y Abbasi-Yadkori, D Pál, C Szepesvári
arXiv preprint arXiv:1102.2670, 2011
652011
Minimax regret of finite partial-monitoring games in stochastic environments
G Bartók, D Pál, C Szepesvári
Proceedings of the 24th Annual Conference on Learning Theory, 133-154, 2011
572011
Scale-free algorithms for online linear optimization
F Orabona, D Pál
International Conference on Algorithmic Learning Theory, 287-301, 2015
502015
Toward a classification of finite partial-monitoring games
A Antos, G Bartók, D Pál, C Szepesvári
Theoretical Computer Science 473, 77-99, 2013
502013
Learning low density separators
S Ben-David, T Lu, D Pál, M Sotáková
Artificial Intelligence and Statistics, 25-32, 2009
242009
Adaptive feature selection: Computationally efficient online sparse linear regression under rip
S Kale, Z Karnin, T Liang, D Pál
International Conference on Machine Learning, 1780-1788, 2017
232017
Optimal non-asymptotic lower bound on the minimax regret of learning with expert advice
F Orabona, D Pál
arXiv preprint arXiv:1511.02176, 2015
222015
Nie można teraz wykonać tej operacji. Spróbuj ponownie później.
Prace 1–20