Follow
Gero Szepannek
Gero Szepannek
Professor Statistics, Business Mathematics and Machine Learning, Stralsund University of Applied
Verified email at hochschule-stralsund.de - Homepage
Title
Cited by
Cited by
Year
Transparency, auditability, and explainability of machine learning models in credit scoring
M Bücker, G Szepannek, A Gosiewska, P Biecek
Journal of the Operational Research Society 73 (1), 70-90, 2022
1392022
ClustMixType: User-Friendly Clustering of Mixed-Type Data in R.
G Szepannek
R J. 10 (2), 200, 2018
982018
klaR–Classification and Visualization
C Roever, N Raabe, K Luebke, U Ligges, G Szepannek, M Zentgraf, ...
R package, Version 0.3-3. Available from http://cran. R-project. org, 2004
63*2004
Why we should teach causal inference: Examples in linear regression with simulated data
K Lübke, M Gehrke, J Horst, G Szepannek
Journal of Statistics Education 28 (2), 133-139, 2020
482020
Facing the challenges of developing fair risk scoring models
G Szepannek, K Lübke
Frontiers in Artificial Intelligence 4, 681915, 2021
302021
Cluster validation for mixed-type data
R Aschenbruck, G Szepannek
Archives of Data Science, Series A 6 (1), 02, 2020
262020
On class imbalance correction for classification algorithms in credit scoring
B Bischl, T Kühn, G Szepannek
Operations Research Proceedings 2014: Selected Papers of the Annual …, 2016
262016
On the combination of locally optimal pairwise classifiers
G Szepannek, B Bischl, C Weihs
Engineering Applications of Artificial Intelligence 22 (1), 79-85, 2009
192009
How much do we see? On the explainability of partial dependence plots for credit risk scoring
G Szepannek, K Lübke
Argumenta Oeconomica, 2023
18*2023
clustmixtype: K-prototypes clustering for mixed variable-type data
G Szepannek, R Aschenbruck
R package version 0.1-16. URL https://cran. r-project. org/package= clustMixType, 2016
17*2016
On the practical relevance of modern machine learning algorithms for credit scoring applications
G Szepannek
WIAS Report Series 29, 88-96, 2017
152017
Distances in classification
C Weihs, G Szepannek
Industrial Conference on Data Mining, 1-12, 2009
152009
Local models in register classification by timbre
C Weihs, G Szepannek, U Ligges, K Luebke, N Raabe
Data science and classification, 315-322, 2006
15*2006
An Overview on the landscape of R packages for open source scorecard modelling
G Szepannek
Risks 10 (3), 67, 2022
14*2022
Perceptually based phoneme recognition in popular music
G Szepannek, M Gruhne, B Bischl, S Krey, T Harczos, F Klefenz, ...
Classification as a Tool for Research: Proceedings of the 11th IFCS Biennial …, 2010
142010
Imputation strategies for clustering mixed-type data with missing values
R Aschenbruck, G Szepannek, AFX Wilhelm
Journal of Classification 40 (1), 2-24, 2023
132023
Local modelling in classification
G Szepannek, J Schiffner, J Wilson, C Weihs
Advances in Data Mining. Medical Applications, E-Commerce, Marketing, and …, 2008
132008
Towards automatic speech recognition based on cochlear traveling wave delay trajectories
T Harczos, G Szepannek, F Klefenz
Proceedings of the International Symposium on Auditory and Audiological …, 2007
132007
Local modelling in classification on different feature subspaces
G Szepannek, C Weihs
Industrial conference on data mining, 226-238, 2006
122006
Explaining Artificial Intelligence with Care: Analyzing the Explainability of Black Box Multiclass Machine Learning Models in Forensics
G Szepannek, K Lübke
KI-Künstliche Intelligenz 36 (2), 125-134, 2022
112022
The system can't perform the operation now. Try again later.
Articles 1–20