Obserwuj
Zahra Ghodsi
Zahra Ghodsi
Assistant Professor of Electrical and Computer Engineering, Purdue University
Zweryfikowany adres z purdue.edu - Strona główna
Tytuł
Cytowane przez
Cytowane przez
Rok
Safetynets: Verifiable execution of deep neural networks on an untrusted cloud
Z Ghodsi, T Gu, S Garg
31st Conference on Neural Information Processing Systems (NIPS 2017), 2017
1922017
Thundervolt: enabling aggressive voltage underscaling and timing error resilience for energy efficient deep learning accelerators
J Zhang, K Rangineni, Z Ghodsi, S Garg
Proceedings of the 55th Annual Design Automation Conference, 19, 2018
1702018
Deepreduce: Relu reduction for fast private inference
NK Jha, Z Ghodsi, S Garg, B Reagen
International Conference on Machine Learning, 4839-4849, 2021
912021
Cryptonas: Private inference on a relu budget
Z Ghodsi, A Veldanda, B Reagen, S Garg
34th Conference on Neural Information Processing Systems (NeurIPS 2020), 2020
892020
Circa: Stochastic relus for private deep learning
Z Ghodsi, NK Jha, B Reagen, S Garg
Advances in Neural Information Processing Systems 34, 2241-2252, 2021
362021
Generating and characterizing scenarios for safety testing of autonomous vehicles
Z Ghodsi, SKS Hari, I Frosio, T Tsai, A Troccoli, SW Keckler, S Garg, ...
2021 IEEE Intelligent Vehicles Symposium (IV), 157-164, 2021
362021
Sphynx: A deep neural network design for private inference
M Cho, Z Ghodsi, B Reagen, S Garg, C Hegde
IEEE Security & Privacy 20 (5), 22-34, 2022
332022
Optimal checkpointing for secure intermittently-powered IoT devices
Z Ghodsi, S Garg, R Karri
2017 IEEE/ACM International Conference on Computer-Aided Design (ICCAD), 376-383, 2017
292017
Characterizing and optimizing end-to-end systems for private inference
K Garimella, Z Ghodsi, NK Jha, S Garg, B Reagen
Proceedings of the 28th ACM International Conference on Architectural …, 2023
222023
Enabling timing error resilience for low-power systolic-array based deep learning accelerators
J Zhang, Z Ghodsi, S Garg, K Rangineni
IEEE Design & Test 37 (2), 93-102, 2019
202019
SafeTPU: A verifiably secure hardware accelerator for deep neural networks
MIM Collantes, Z Ghodsi, S Garg
2020 IEEE 38th VLSI Test Symposium (VTS), 1-6, 2020
122020
Tensor-based driving scenario characterization
SKS Hari, I Frosio, Z Ghodsi, A Anandkumar, T Tsai, SW Keckler
US Patent 11,390,301, 2022
82022
Outsourcing private machine learning via lightweight secure arithmetic computation
S Garg, Z Ghodsi, C Hazay, Y Ishai, A Marcedone, ...
arXiv preprint arXiv:1812.01372, 2018
62018
zPROBE: Zero peek robustness checks for federated learning
Z Ghodsi, M Javaheripi, N Sheybani, X Zhang, K Huang, F Koushanfar
Proceedings of the IEEE/CVF International Conference on Computer Vision …, 2023
52023
Cryptonite: Revealing the pitfalls of end-to-end private inference at scale
K Garimella, NK Jha, Z Ghodsi, S Garg, B Reagen
arXiv preprint arXiv:2111.02583, 2021
42021
ZKROWNN: Zero Knowledge Right of Ownership for Neural Networks
N Sheybani, Z Ghodsi, R Kapila, F Koushanfar
2023 60th ACM/IEEE Design Automation Conference (DAC), 1-6, 2023
22023
Secure Frameworks for Outsourced Deep Learning Inference
Z Ghodsi
New York University Tandon School of Engineering, 2021
12021
Adversarial scenarios for safety testing of autonomous vehicles
SKS Hari, I Frosio, Z Ghodsi, A Anandkumar, T Tsai, SW Keckler, ...
US Patent 11,977,386, 2024
2024
AdaGL: Adaptive Learning for Agile Distributed Training of Gigantic GNNs
R Zhang, M Javaheripi, Z Ghodsi, A Bleiweiss, F Koushanfar
2023 60th ACM/IEEE Design Automation Conference (DAC), 1-6, 2023
2023
AnoFel: Supporting Anonymity for Privacy-Preserving Federated Learning
G Almashaqbeh, Z Ghodsi
arXiv preprint arXiv:2306.06825, 2023
2023
Nie można teraz wykonać tej operacji. Spróbuj ponownie później.
Prace 1–20