Obserwuj
Prof Amir Hussain
Tytuł
Cytowane przez
Cytowane przez
Rok
A review of affective computing: From unimodal analysis to multimodal fusion
S Poria, E Cambria, R Bajpai, A Hussain
Information Fusion 37, 98-125, 2017
16332017
Applications of deep learning and reinforcement learning to biological data
M Mahmud, MS Kaiser, A Hussain, S Vassanelli
IEEE transactions on neural networks and learning systems 29 (6), 2063-2079, 2018
9272018
Convolutional MKL based multimodal emotion recognition and sentiment analysis
S Poria, I Chaturvedi, E Cambria, A Hussain
2016 IEEE 16th international conference on data mining (ICDM), 439-448, 2016
6952016
Unsupervised machine learning for networking: Techniques, applications and research challenges
M Usama, J Qadir, A Raza, H Arif, KLA Yau, Y Elkhatib, A Hussain, ...
IEEE Access 7, 65579-65615, 2019
6392019
Fusing audio, visual and textual clues for sentiment analysis from multimodal content
S Poria, E Cambria, N Howard, GB Huang, A Hussain
Neurocomputing 174, 50-59, 2016
6212016
Interpreting black-box models: a review on explainable artificial intelligence
V Hassija, V Chamola, A Mahapatra, A Singal, D Goel, K Huang, ...
Cognitive Computation 16 (1), 45-74, 2024
6082024
Group sparse regularization for deep neural networks
S Scardapane, D Comminiello, A Hussain, A Uncini
Neurocomputing 241, 81-89, 2017
5722017
Agent-based computing from multi-agent systems to agent-based models: a visual survey
M Niazi, A Hussain
Scientometrics 89 (2), 479, 2011
5402011
The hourglass of emotions
E Cambria, A Livingstone, A Hussain
Cognitive Behavioural Systems: COST 2102 International Training School …, 2012
4792012
Senticnet: A publicly available semantic resource for opinion mining.
E Cambria, R Speer, C Havasi, A Hussain
AAAI fall symposium: commonsense knowledge 10 (0), 2010
4692010
Multimodal sentiment analysis: A systematic review of history, datasets, multimodal fusion methods, applications, challenges and future directions
A Gandhi, K Adhvaryu, S Poria, E Cambria, A Hussain
Information Fusion 91, 424-444, 2023
4582023
Big data and IoT-based applications in smart environments: A systematic review
Y Hajjaji, W Boulila, IR Farah, I Romdhani, A Hussain
Computer Science Review 39, 100318, 2021
4322021
Deep learning in mining biological data
M Mahmud, MS Kaiser, TM McGinnity, A Hussain
Cognitive Computation, 1-33, 2021
3932021
Sentic computing: Techniques, tools, and applications
E Cambria, A Hussain
Springer Science & Business Media, 2012
3932012
A Novel Two-Stage Deep Learning Model for Efficient Network Intrusion Detection
FA Khan, A Gumaei, A Derhab, A Hussain
IEEE Access, 2019
3902019
Multilingual Sentiment Analysis: State of the Art and Independent Comparison of Techniques (vol 8, pg 757, 2016)
K Dashtipour, S Poria, A Hussain, E Cambria, AYA Hawalah, A Gelbukh, ...
COGNITIVE COMPUTATION 8 (4), 772-775, 2016
357*2016
Comparing oversampling techniques to handle the class imbalance problem: a customer churn prediction case study
A Amin, S Anwar, A Adnan, M Nawaz, N Howard, J Qadir, A Hawalah, ...
IEEE Access 4, 7940-7957, 2016
3482016
SenticNet 2: A Semantic and Affective Resource for Opinion Mining and Sentiment Analysis.
E Cambria, C Havasi, A Hussain
FLAIRS, 202-207, 2012
3442012
Sentic LSTM: a hybrid network for targeted aspect-based sentiment analysis
Y Ma, H Peng, T Khan, E Cambria, A Hussain
Cognitive Computation 10, 639-650, 2018
3332018
SenticNet
E Cambria, A Hussain, E Cambria, A Hussain
Sentic Computing: a common-sense-based framework for concept-level sentiment …, 2015
3232015
Nie można teraz wykonać tej operacji. Spróbuj ponownie później.
Prace 1–20