Direct and inverse one-phase Stefan problem solved by the variational iteration method D Słota Computers & Mathematics with Applications 54 (7-8), 1139-1146, 2007 | 72 | 2007 |
Cardano's formula, square roots, Chebyshev polynomials and radicals R Wituła, D Słota Journal of Mathematical Analysis and Applications 363 (2), 639-647, 2010 | 71 | 2010 |
Application of the homotopy perturbation method for the solution of inverse heat conduction problem E Hetmaniok, I Nowak, D Słota, R Wituła International Communications in Heat and Mass Transfer 39, 30-35, 2012 | 62 | 2012 |
One-phase inverse stefan problem solved by adomian decomposition method R Grzymkowski, D Słota Computers & Mathematics with Applications 51 (1), 33-40, 2006 | 61 | 2006 |
Homotopy perturbation method for solving the two-phase inverse Stefan problem D Słota Numerical Heat Transfer, Part A: Applications 59 (10), 755-768, 2011 | 58 | 2011 |
Solving the inverse Stefan design problem using genetic algorithms D Słota Inverse Problems in Science and Engineering 16 (7), 829-846, 2008 | 58 | 2008 |
Usage of the homotopy analysis method for solving the nonlinear and linear integral equations of the second kind E Hetmaniok, D Słota, T Trawiński, R Wituła Numerical Algorithms 67, 163-185, 2014 | 57 | 2014 |
Identification of the cooling condition in 2-D and 3-D continuous casting processes D Słota Numerical Heat Transfer, Part B: Fundamentals 55 (2), 155-176, 2009 | 57 | 2009 |
The application of the homotopy perturbation method to one-phase inverse Stefan problem D Slota International Communications in Heat and Mass Transfer 37 (6), 587-592, 2010 | 51 | 2010 |
Mathematica 4 G Drwal, R Grzymkowski, A Kapusta, D Słota Wydawnictwo Pracowni Komputerowej Jacka Skalmierskiego, Gliwice, 2000 | 51 | 2000 |
Restoring boundary conditions in the solidification of pure metals D Słota Computers & Structures 89 (1), 48-54, 2011 | 50 | 2011 |
On modified Chebyshev polynomials R Wituła, D Słota Journal of mathematical analysis and applications 324 (1), 321-343, 2006 | 41 | 2006 |
Using genetic algorithms for the determination of an heat transfer coefficient in three-phase inverse Stefan problem D Słota International Communications in Heat and Mass Transfer 35 (2), 149-156, 2008 | 40 | 2008 |
Stefan problem solved by Adomian decomposition method R Grzymkowski, D Słota International Journal of Computer Mathematics 82 (7), 851-856, 2005 | 36 | 2005 |
Solution of the inverse heat conduction problem by using the ABC algorithm E Hetmaniok, D Słota, A Zielonka Rough Sets and Current Trends in Computing: 7th International Conference …, 2010 | 35 | 2010 |
Comparison of mathematical models with fractional derivative for the heat conduction inverse problem based on the measurements of temperature in porous aluminum R Brociek, D Słota, M Król, G Matula, W Kwaśny International Journal of Heat and Mass Transfer 143, 118440, 2019 | 33 | 2019 |
A Study of the Convergence of and Error Estimation for the Homotopy Perturbation Method for the Volterra-Fredholm Integral Equations E Hetmaniok, I Nowak, D Słota, R Wituła Applied Mathematics Letters 26, 165-169, 2013 | 32 | 2013 |
Comparison of the Adomian decomposition method and the variational iteration method in solving the moving boundary problem E Hetmaniok, D Słota, R Wituła, A Zielonka Computers & Mathematics with Applications 61 (8), 1931-1934, 2011 | 32 | 2011 |
Mathematica 6 R Grzymkowski, A Kapusta, T Kuboszek, D Słota Gliwice, Wydaw. Pracowni Komputerowej J. Skalmierskiego, 2008 | 32 | 2008 |
Some dynamics balance of production via optimization and simulation within System Dynamics method E Kasperska, E Mateja-Losa, D Słota Proc. of the 19th International Conference of the System Dynamics Society …, 2001 | 31 | 2001 |