Obserwuj
Bernhard Pfahringer
Bernhard Pfahringer
Professor of Computer Science, University of Waikato
Zweryfikowany adres z waikato.ac.nz - Strona główna
Tytuł
Cytowane przez
Cytowane przez
Rok
The WEKA data mining software: an update
M Hall, E Frank, G Holmes, B Pfahringer, P Reutemann, IH Witten
ACM SIGKDD explorations newsletter 11 (1), 10-18, 2009
254512009
Classifier chains for multi-label classification
J Read, B Pfahringer, G Holmes, E Frank
Machine learning 85, 333-359, 2011
24722011
Moa: Massive online analysis, a framework for stream classification and clustering
A Bifet, G Holmes, B Pfahringer, P Kranen, H Kremer, T Jansen, T Seidl
Proceedings of the first workshop on applications of pattern analysis, 44-50, 2010
22932010
Classifier chains for multi-label classification
J Read, B Pfahringer, G Holmes, E Frank
Machine Learning and Knowledge Discovery in Databases: European Conference …, 2009
10622009
New ensemble methods for evolving data streams
A Bifet, G Holmes, B Pfahringer, R Kirkby, R Gavalda
Proceedings of the 15th ACM SIGKDD international conference on Knowledge …, 2009
8432009
Weka-a machine learning workbench for data mining
E Frank, M Hall, G Holmes, R Kirkby, B Pfahringer, IH Witten, L Trigg
Data mining and knowledge discovery handbook, 1269-1277, 2010
8322010
Multinomial naive bayes for text categorization revisited
AM Kibriya, E Frank, B Pfahringer, G Holmes
AI 2004: Advances in Artificial Intelligence: 17th Australian Joint …, 2005
6752005
Multi-label classification using ensembles of pruned sets
J Read, B Pfahringer, G Holmes
2008 eighth IEEE international conference on data mining, 995-1000, 2008
5952008
Meta-Learning by Landmarking Various Learning Algorithms.
B Pfahringer, H Bensusan, CG Giraud-Carrier
ICML, 743-750, 2000
5392000
Regularisation of neural networks by enforcing lipschitz continuity
H Gouk, E Frank, B Pfahringer, MJ Cree
Machine Learning 110, 393-416, 2021
5282021
Locally weighted naive bayes
E Frank, M Hall, B Pfahringer
arXiv preprint arXiv:1212.2487, 2012
5062012
Leveraging bagging for evolving data streams
A Bifet, G Holmes, B Pfahringer
Machine Learning and Knowledge Discovery in Databases: European Conference …, 2010
4722010
WEKA---Experiences with a Java Open-Source Project
RR Bouckaert, E Frank, MA Hall, G Holmes, B Pfahringer, P Reutemann, ...
The Journal of Machine Learning Research 11, 2533-2541, 2010
4662010
Active learning with drifting streaming data
I Žliobaitė, A Bifet, B Pfahringer, G Holmes
IEEE transactions on neural networks and learning systems 25 (1), 27-39, 2013
4482013
Smote for regression
L Torgo, RP Ribeiro, B Pfahringer, P Branco
Portuguese conference on artificial intelligence, 378-389, 2013
3762013
Machine learning for data streams: with practical examples in MOA
A Bifet, R Gavalda, G Holmes, B Pfahringer
MIT press, 2023
3612023
Meka: a multi-label/multi-target extension to weka
J Read, P Reutemann, B Pfahringer, G Holmes
Journal of Machine Learning Research 17 (21), 1-5, 2016
3342016
Winning the KDD99 classification cup: Bagged boosting
B Pfahringer
ACM SIGKDD Explorations Newsletter 1 (2), 65-66, 2000
3292000
Multiclass alternating decision trees
G Holmes, B Pfahringer, R Kirkby, E Frank, M Hall
Machine Learning: ECML 2002: 13th European Conference on Machine Learning …, 2002
2662002
Efficient online evaluation of big data stream classifiers
A Bifet, G de Francisci Morales, J Read, G Holmes, B Pfahringer
Proceedings of the 21th ACM SIGKDD international conference on knowledge …, 2015
2332015
Nie można teraz wykonać tej operacji. Spróbuj ponownie później.
Prace 1–20