Obserwuj
Wenqi Wei
Wenqi Wei
IBM Research
Zweryfikowany adres z ibm.com - Strona główna
Tytuł
Cytowane przez
Cytowane przez
Rok
Demystifying membership inference attacks in machine learning as a service
S Truex, L Liu, ME Gursoy, L Yu, W Wei
IEEE Transactions on Services Computing, 2019
201*2019
LDP-Fed: Federated learning with local differential privacy
S Truex, L Liu, KH Chow, ME Gursoy, W Wei
Proceedings of the Third ACM International Workshop on Edge Systems …, 2020
892020
A Framework for Evaluating Client Privacy Leakages in Federated Learning
W Wei, L Liu, M Loper, KH Chow, ME Gursoy, S Truex, Y Wu
European Symposium on Research in Computer Security, 545-566, 2020
75*2020
Demystifying learning rate policies for high accuracy training of deep neural networks
Y Wu, L Liu, J Bae, KH Chow, A Iyengar, C Pu, W Wei, L Yu, Q Zhang
2019 IEEE International conference on big data (Big Data), 1971-1980, 2019
642019
Secure and utility-aware data collection with condensed local differential privacy
ME Gursoy, A Tamersoy, S Truex, W Wei, L Liu
IEEE Transactions on Dependable and Secure Computing 18 (5), 2365-2378, 2019
482019
Deep neural network ensembles against deception: Ensemble diversity, accuracy and robustness
L Liu, W Wei, KH Chow, M Loper, E Gursoy, S Truex, Y Wu
2019 IEEE 16th international conference on mobile ad hoc and sensor systems …, 2019
402019
Utility-aware synthesis of differentially private and attack-resilient location traces
ME Gursoy, L Liu, S Truex, L Yu, W Wei
Proceedings of the 2018 ACM SIGSAC conference on computer and communications …, 2018
372018
Benchmarking deep learning frameworks: Design considerations, metrics and beyond
L Liu, Y Wu, W Wei, W Cao, S Sahin, Q Zhang
2018 IEEE 38th International Conference on Distributed Computing Systems …, 2018
332018
A comparative measurement study of deep learning as a service framework
Y Wu, L Liu, C Pu, W Cao, S Sahin, W Wei, Q Zhang
IEEE Transactions on Services Computing, 2019
322019
Adversarial Deception in Deep Learning: Analysis and Mitigation
W Wei, L Liu, M Loper, KH Chow, ME Gursoy, S Truex, Y Wu
2020 Second IEEE International Conference on Trust, Privacy and Security in …, 2020
22*2020
Private and truthful aggregative game for large-scale spectrum sharing
P Zhou, W Wei, K Bian, DO Wu, Y Hu, Q Wang
IEEE Journal on Selected Areas in Communications 35 (2), 463-477, 2017
202017
Effects of differential privacy and data skewness on membership inference vulnerability
S Truex, L Liu, ME Gursoy, W Wei, L Yu
2019 First IEEE International Conference on Trust, Privacy and Security in …, 2019
192019
Adversarial objectness gradient attacks in real-time object detection systems
KH Chow, L Liu, M Loper, J Bae, ME Gursoy, S Truex, W Wei, Y Wu
2020 Second IEEE International Conference on Trust, Privacy and Security in …, 2020
18*2020
Denoising and verification cross-layer ensemble against black-box adversarial attacks
KH Chow, W Wei, Y Wu, L Liu
2019 IEEE International Conference on Big Data (Big Data), 1282-1291, 2019
152019
Understanding object detection through an adversarial lens
KH Chow, L Liu, ME Gursoy, S Truex, W Wei, Y Wu
European Symposium on Research in Computer Security, 460-481, 2020
132020
Cross-layer strategic ensemble defense against adversarial examples
W Wei, L Liu, M Loper, KH Chow, E Gursoy, S Truex, Y Wu
2020 International Conference on Computing, Networking and Communications …, 2020
132020
Gradient-leakage resilient federated learning
W Wei, L Liu, Y Wut, G Su, A Iyengar
2021 IEEE 41st International Conference on Distributed Computing Systems …, 2021
92021
Robust deep learning ensemble against deception
W Wei, L Liu
IEEE Transactions on Dependable and Secure Computing 18 (4), 1513-1527, 2020
92020
Bitcoin transaction forecasting with deep network representation learning
W Wei, Q Zhang, L Liu
IEEE Transactions on Emerging Topics in Computing 9 (3), 1359-1371, 2020
82020
Network representation learning: from preprocessing, feature extraction to node embedding
J Zhou, L Liu, W Wei, J Fan
ACM Computing Surveys (CSUR) 55 (2), 1-35, 2022
72022
Nie można teraz wykonać tej operacji. Spróbuj ponownie później.
Prace 1–20