Plug and play language models: A simple approach to controlled text generation S Dathathri, A Madotto, J Lan, J Hung, E Frank, P Molino, J Yosinski, ... arXiv preprint arXiv:1912.02164, 2019 | 996 | 2019 |
Deconstructing lottery tickets: Zeros, signs, and the supermask H Zhou, J Lan, R Liu, J Yosinski Advances in neural information processing systems 32, 2019 | 477 | 2019 |
The Open Catalyst 2022 (OC22) dataset and challenges for oxide electrocatalysts R Tran, J Lan, M Shuaibi, BM Wood, S Goyal, A Das, J Heras-Domingo, ... ACS Catalysis 13 (5), 3066-3084, 2023 | 144 | 2023 |
Spherical channels for modeling atomic interactions L Zitnick, A Das, A Kolluru, J Lan, M Shuaibi, A Sriram, Z Ulissi, B Wood Advances in Neural Information Processing Systems 35, 8054-8067, 2022 | 64 | 2022 |
LCA: Loss Change Allocation for Neural Network Training J Lan, R Liu, H Zhou, J Yosinski arXiv preprint arXiv:1909.01440, 2019 | 47* | 2019 |
AdsorbML: a leap in efficiency for adsorption energy calculations using generalizable machine learning potentials J Lan, A Palizhati, M Shuaibi, BM Wood, B Wander, A Das, M Uyttendaele, ... npj Computational Materials 9 (1), 172, 2023 | 32 | 2023 |
Adsorbml: Accelerating adsorption energy calculations with machine learning J Lan, A Palizhati, M Shuaibi, BM Wood, B Wander, A Das, M Uyttendaele, ... arXiv preprint arXiv:2211.16486 1 (2), 7, 2022 | 13 | 2022 |
Deconstructing Lottery Tickets: Zeros H Zhou, J Lan, R Liu, J Yosinski Signs, and the Supermask 10, 2019 | 9 | 2019 |
First-order preconditioning via hypergradient descent T Moskovitz, R Wang, J Lan, S Kapoor, T Miconi, J Yosinski, A Rawal arXiv preprint arXiv:1910.08461, 2019 | 6 | 2019 |
Deconstructing Lottery Tickets: Zeros, Signs, and the Supermask.(May 2019) H Zhou, J Lan, R Liu, J Yosinski URL http://arxiv. org/abs, 1905 | 4 | 1905 |
The Open Catalyst Challenge 2021: Competition Report. A Das, M Shuaibi, A Palizhati, S Goyal, A Grover, A Kolluru, J Lan, A Rizvi, ... NeurIPS (Competition and Demos), 29-40, 2021 | 3 | 2021 |
Thinking LLMs: General Instruction Following with Thought Generation T Wu, J Lan, W Yuan, J Jiao, J Weston, S Sukhbaatar arXiv preprint arXiv:2410.10630, 2024 | 2 | 2024 |
Improved Uncertainty Estimation of Graph Neural Network Potentials Using Engineered Latent Space Distances J Musielewicz, J Lan, M Uyttendaele, JR Kitchin The Journal of Physical Chemistry C 128 (49), 20799-20810, 2024 | 1 | 2024 |
Open Catalyst Experiments 2024 (OCx24): Bridging Experiments and Computational Models J Abed, J Kim, M Shuaibi, B Wander, B Duijf, S Mahesh, H Lee, ... arXiv preprint arXiv:2411.11783, 2024 | | 2024 |
Rotationally Invariant Latent Distances for Uncertainty Estimation of Relaxed Energy Predictions by Graph Neural Network Potentials J Musielewicz, J Lan, M Uyttendaele, JR Kitchin arXiv e-prints, arXiv: 2407.10844, 2024 | | 2024 |
Predictive Uncertainty Quantification for Graph Neural Network Driven Relaxed Energy Calculations J Musielewicz, J Lan, M Uyttendaele NeurIPS 2023 AI for Science Workshop, 0 | | |
Chemistry Insights for Large Pretrained GNNs K Xu, J Lan NeurIPS 2022 AI for Science: Progress and Promises, 0 | | |
Uncovering the impact of hyperparameters for global magnitude pruning J Lan, R Chin, A Baevski, AS Morcos | | |