A fast learning algorithm for deep belief nets GE Hinton, S Osindero, YW Teh Neural computation 18 (7), 1527-1554, 2006 | 21697 | 2006 |
Conditional generative adversarial nets M Mirza, S Osindero NIPS 2014: Deep Learning and Representation Learning Workshop, 2014 | 13906 | 2014 |
Meta-Learning with Latent Embedding Optimization AA Rusu, D Rao, J Sygnowski, O Vinyals, R Pascanu, S Osindero, ... arXiv preprint arXiv:1807.05960, 2018 | 1640 | 2018 |
Training compute-optimal large language models J Hoffmann, S Borgeaud, A Mensch, E Buchatskaya, T Cai, E Rutherford, ... arXiv preprint arXiv:2203.15556, 2022 | 1555 | 2022 |
Feudal networks for hierarchical reinforcement learning AS Vezhnevets, S Osindero, T Schaul, N Heess, M Jaderberg, D Silver, ... Proceedings of the 34th International Conference on Machine Learning-Volume …, 2017 | 1089 | 2017 |
Scaling Language Models: Methods, Analysis & Insights from Training Gopher JW Rae, S Borgeaud, T Cai, K Millican, J Hoffmann, F Song, J Aslanides, ... arXiv preprint arXiv:2112.11446, 2021 | 978 | 2021 |
Improving language models by retrieving from trillions of tokens S Borgeaud, A Mensch, J Hoffmann, T Cai, E Rutherford, K Millican, ... International Conference on Machine Learning, 2206-2240, 2022 | 906 | 2022 |
Population Based Training of Neural Networks M Jaderberg, V Dalibard, S Osindero, WM Czarnecki, J Donahue, ... arXiv preprint arXiv:1711.09846, 2017 | 903 | 2017 |
The Dartmouth College artificial intelligence conference: The next fifty years J Moor Ai Magazine 27 (4), 87, 2006 | 720 | 2006 |
Recursive Recurrent Nets with Attention Modeling for OCR in the Wild CY Lee, S Osindero Proceedings of the IEEE Conference on Computer Vision and Pattern …, 2016 | 602 | 2016 |
Cross-Dimensional Weighting for Aggregated Deep Convolutional Features Y Kalantidis, C Mellina, S Osindero European Conference on Computer Vision, 685-701, 2016 | 504 | 2016 |
Decoupled neural interfaces using synthetic gradients M Jaderberg, WM Czarnecki, S Osindero, O Vinyals, A Graves, D Silver, ... Proceedings of the 34th International Conference on Machine Learning-Volume …, 2017 | 428 | 2017 |
Sobolev training for neural networks WM Czarnecki, S Osindero, M Jaderberg, G Swirszcz, R Pascanu Advances in Neural Information Processing Systems, 4281-4290, 2017 | 282 | 2017 |
Energy-based models for sparse overcomplete representations YW Teh, M Welling, S Osindero, GE Hinton Journal of Machine Learning Research 4 (Dec), 1235-1260, 2003 | 264 | 2003 |
Learning sparse topographic representations with products of student-t distributions M Welling, S Osindero, GE Hinton Advances in neural information processing systems, 1359-1366, 2002 | 199 | 2002 |
Unsupervised discovery of nonlinear structure using contrastive backpropagation G Hinton, S Osindero, M Welling, YW Teh Cognitive Science 30 (4), 725-731, 2006 | 189 | 2006 |
An alternative infinite mixture of Gaussian process experts E Meeds, S Osindero Advances in Neural Information Processing Systems 18, 883, 2006 | 188 | 2006 |
Strategic attentive writer for learning macro-actions A Vezhnevets, V Mnih, S Osindero, A Graves, O Vinyals, J Agapiou Advances in Neural Information Processing Systems, 3486-3494, 2016 | 185 | 2016 |
Modeling image patches with a directed hierarchy of Markov random fields S Osindero, GE Hinton Advances in neural information processing systems, 1121-1128, 2008 | 159 | 2008 |
Kickstarting Deep Reinforcement Learning S Schmitt, JJ Hudson, A Zidek, S Osindero, C Doersch, WM Czarnecki, ... arXiv preprint arXiv:1803.03835, 2018 | 150 | 2018 |