Obserwuj
Matthew D. Hoffman
Matthew D. Hoffman
Research Scientist, Google Research
Zweryfikowany adres z google.com - Strona główna
Tytuł
Cytowane przez
Cytowane przez
Rok
Stan: a probabilistic programming language
B Carpenter, A Gelman, M Hoffman, D Lee, B Goodrich, M Betancourt, ...
Journal of Statistical Software, 2015
68202015
The No-U-Turn sampler: adaptively setting path lengths in Hamiltonian Monte Carlo.
MD Hoffman, A Gelman
J. Mach. Learn. Res. 15 (1), 1593-1623, 2014
46082014
Stochastic variational inference
MD Hoffman, DM Blei, C Wang, J Paisley
Journal of Machine Learning Research, 2013
27922013
Online learning for latent dirichlet allocation
M Hoffman, DM Blei, F Bach
Advances in Neural Information Processing Systems 23, 856-864, 2010
21362010
Variational autoencoders for collaborative filtering
D Liang, RG Krishnan, MD Hoffman, T Jebara
Proceedings of the 2018 World Wide Web Conference, 689-698, 2018
10142018
Music transformer
CZA Huang, A Vaswani, J Uszkoreit, N Shazeer, I Simon, C Hawthorne, ...
Advances in Neural Processing Systems 3, 4, 2018
6782018
Learning Activation Functions to Improve Deep Neural Networks
F Agostinelli, M Hoffman, P Sadowski, P Baldi
arXiv preprint arXiv:1412.6830, 2014
6332014
Stochastic Gradient Descent as Approximate Bayesian Inference
S Mandt, MD Hoffman, DM Blei
arXiv preprint arXiv:1704.04289, 2017
5882017
Underspecification presents challenges for credibility in modern machine learning
A D'Amour, K Heller, D Moldovan, B Adlam, B Alipanahi, A Beutel, ...
The Journal of Machine Learning Research 23 (1), 10237-10297, 2022
5362022
Tensorflow distributions
JV Dillon, I Langmore, D Tran, E Brevdo, S Vasudevan, D Moore, B Patton, ...
arXiv preprint arXiv:1711.10604, 2017
4902017
ELBO surgery: yet another way to carve up the variational evidence lower bound
MD Hoffman, MJ Johnson
NIPS 2016 Workshop on Advances in Approximate Bayesian Inference, 2016
3472016
What are Bayesian neural network posteriors really like?
P Izmailov, S Vikram, MD Hoffman, AGG Wilson
International conference on machine learning, 4629-4640, 2021
2352021
Deep Probabilistic Programming
D Tran, MD Hoffman, RA Saurous, E Brevdo, K Murphy, DM Blei
arXiv preprint arXiv:1701.03757, 2017
2292017
A Unified View of Static and Dynamic Source Separation Using Non-Negative Factorizations
P Smaragdis, C Févotte, GJ Mysore, N Mohammadiha, M Hoffman
IEEE Signal Processing Magazine, 2014
214*2014
Bayesian nonparametric matrix factorization for recorded music
M Hoffman, D Blei, P Cook
Proc. ICML, 439-446, 2010
2062010
Sparse stochastic inference for latent dirichlet allocation
D Mimno, M Hoffman, D Blei
arXiv preprint arXiv:1206.6425, 2012
1882012
Nonparametric variational inference
S Gershman, M Hoffman, D Blei
arXiv preprint arXiv:1206.4665, 2012
1802012
Structured stochastic variational inference
MD Hoffman, DM Blei
Artificial Intelligence and Statistics, 2015
173*2015
A variational analysis of stochastic gradient algorithms
S Mandt, M Hoffman, D Blei
International Conference on Machine Learning, 354-363, 2016
1482016
Patterns and Sequences: Interactive Exploration of Clickstreams to Understand Common Visitor Paths
Z Liu, Y Wang, M Dontcheva, M Hoffman, S Walker, A Wilson
IEEE Transactions on Visualization & Computer Graphics, 1-1, 2016
1412016
Nie można teraz wykonać tej operacji. Spróbuj ponownie później.
Prace 1–20