Exploring the limits of transfer learning with a unified text-to-text transformer C Raffel*, N Shazeer*, A Roberts*, K Lee*, S Narang, M Matena, Y Zhou, ... Journal of Machine Learning Research 21 (140), 1-67, 2020 | 4180 | 2020 |
librosa: Audio and music signal analysis in python B McFee, C Raffel, D Liang, DPW Ellis, M McVicar, E Battenberg, O Nieto Proceedings of the 14th python in science conference 8, 2015 | 1715 | 2015 |
Mixmatch: A holistic approach to semi-supervised learning D Berthelot, N Carlini, I Goodfellow, N Papernot, A Oliver, C Raffel Advances in Neural Information Processing Systems, 5050-5060, 2019 | 1482 | 2019 |
Fixmatch: Simplifying semi-supervised learning with consistency and confidence K Sohn*, D Berthelot*, CL Li, Z Zhang, N Carlini, ED Cubuk, A Kurakin, ... arXiv preprint arXiv:2001.07685, 2020 | 1061 | 2020 |
Theano: A Python framework for fast computation of mathematical expressions R Al-Rfou, G Alain, A Almahairi, C Angermueller, D Bahdanau, N Ballas, ... arXiv preprint arXiv:1605.02688, 2016 | 985 | 2016 |
Realistic evaluation of deep semi-supervised learning algorithms A Oliver*, A Odena*, C Raffel*, ED Cubuk, ... Advances in Neural Information Processing Systems, 3235-3246, 2018 | 799 | 2018 |
Thermometer Encoding: One Hot Way To Resist Adversarial Examples J Buckman*, A Roy*, C Raffel, I Goodfellow (* denotes equal contribution) | 495 | 2018 |
Remixmatch: Semi-supervised learning with distribution alignment and augmentation anchoring D Berthelot, N Carlini, ED Cubuk, A Kurakin, K Sohn, H Zhang, C Raffel arXiv preprint arXiv:1911.09785, 2019 | 488 | 2019 |
mT5: A massively multilingual pre-trained text-to-text transformer L Xue, N Constant, A Roberts, M Kale, R Al-Rfou, A Siddhant, A Barua, ... arXiv preprint arXiv:2010.11934, 2020 | 460 | 2020 |
mir_eval: A Transparent Implementation of Common MIR Metrics C Raffel, B McFee, EJ Humphrey, J Salamon, O Nieto, D Liang, DPW Ellis Proc. of the 15th International Society for Music Information Retrieval …, 2014 | 413 | 2014 |
A hierarchical latent vector model for learning long-term structure in music A Roberts, J Engel, C Raffel, C Hawthorne, D Eck International conference on machine learning, 4364-4373, 2018 | 348 | 2018 |
Feed-forward networks with attention can solve some long-term memory problems C Raffel, DPW Ellis arXiv preprint arXiv:1512.08756, 2015 | 304 | 2015 |
Extracting training data from large language models N Carlini, F Tramer, E Wallace, M Jagielski, A Herbert-Voss, K Lee, ... 30th USENIX Security Symposium (USENIX Security 21), 2633-2650, 2021 | 302 | 2021 |
Lasagne: first release S Dieleman, J Schlüter, C Raffel, E Olson, SK Sønderby, D Nouri, ... Zenodo: Geneva, Switzerland 3, 2015 | 297 | 2015 |
How Much Knowledge Can You Pack Into the Parameters of a Language Model? A Roberts*, C Raffel*, N Shazeer (* denotes equal contribution) arXiv preprint arXiv:2002.08910, 2020 | 279 | 2020 |
Imperceptible, robust, and targeted adversarial examples for automatic speech recognition Y Qin, N Carlini, G Cottrell, I Goodfellow, C Raffel International conference on machine learning, 5231-5240, 2019 | 268 | 2019 |
Online and linear-time attention by enforcing monotonic alignments C Raffel, MT Luong, PJ Liu, RJ Weiss, D Eck International Conference on Machine Learning, 2837-2846, 2017 | 230 | 2017 |
Onsets and frames: Dual-objective piano transcription C Hawthorne, E Elsen, J Song, A Roberts, I Simon, C Raffel, J Engel, ... arXiv preprint arXiv:1710.11153, 2017 | 216 | 2017 |
Learning-based methods for comparing sequences, with applications to audio-to-midi alignment and matching C Raffel Columbia University, 2016 | 207 | 2016 |
Monotonic chunkwise attention CC Chiu*, C Raffel* (* denotes equal contribution) arXiv preprint arXiv:1712.05382, 2017 | 204 | 2017 |