Asja Fischer
Asja Fischer
Professor for Machine Learning, Ruhr University Bochum
Zweryfikowany adres z ini.rub.de
Tytuł
Cytowane przez
Cytowane przez
Rok
A closer look at memorization in deep networks
D Arpit, S Jastrzębski, N Ballas, D Krueger, E Bengio, MS Kanwal, ...
International Conference of Machine Learning (ICML), 233--242, 2017
6562017
An introduction to restricted Boltzmann machines
A Fischer, C Igel
Iberoamerican congress on pattern recognition, 14-36, 2012
5952012
Training restricted Boltzmann machines: An introduction
A Fischer, C Igel
Pattern Recognition 47 (1), 25-39, 2014
4632014
Three factors influencing minima in sgd
S Jastrzębski, Z Kenton, D Arpit, N Ballas, A Fischer, Y Bengio, A Storkey
International Conference of Artificial Neural Networks (ICANN 2018)/ arXiv …, 2017
2202017
Difference target propagation
DH Lee, S Zhang, A Fischer, Y Bengio
Joint european conference on machine learning and knowledge discovery in …, 2015
2002015
Neural network-based question answering over knowledge graphs on word and character level
D Lukovnikov, A Fischer, J Lehmann, S Auer
Proceedings of the 26th international conference on World Wide Web, 1211-1220, 2017
1882017
On the regularization of Wasserstein GANs
H Petzka, A Fischer, D Lukovnikov
International Conference on Learning Representations (ICLR), 2018
1262018
Empirical analysis of the divergence of Gibbs sampling based learning algorithms for restricted Boltzmann machines
A Fischer, C Igel
International conference on artificial neural networks, 208-217, 2010
762010
STDP-Compatible Approximation of Back-Propagation in an Energy-Based Model
Y Bengio, T Mesnard, A Fischer, S Zhang, Y Wu
Neural Computation, 2017
752017
On the Relation Between the Sharpest Directions of DNN Loss and the SGD Step Length
S Jastrzębski, Z Kenton, N Ballas, A Fischer, Y Bengio, A Storkey
International Conference on Learning Representations (ICLR) 2019, 2019
48*2019
Deep Nets Don't Learn via Memorization
D Krueger, N Ballas, S Jastrzebski, D Arpit, MS Kanwal, T Maharaj, ...
International Conference of Learning Representations (ICLR) - workshop track, 2017
472017
STDP as presynaptic activity times rate of change of postsynaptic activity
Y Bengio, T Mesnard, A Fischer, S Zhang, Y Wu
arXiv preprint arXiv:1509.05936, 2015
44*2015
Bounding the bias of contrastive divergence learning
A Fischer, C Igel
Neural computation 23 (3), 664-673, 2011
442011
Incorporating literals into knowledge graph embeddings
A Kristiadi, MA Khan, D Lukovnikov, J Lehmann, A Fischer
International Semantic Web Conference. Springer, 2019
412019
Leveraging Frequency Analysis for Deep Fake Image Recognition
J Frank, T Eisenhofer, L Schönherr, A Fischer, D Kolossa, T Holz
International Conference of Machine Learning (ICML 2020), 2020
392020
How to center deep Boltzmann machines
J Melchior, A Fischer, L Wiskott
Journal of Machine Learning Research 17 (99), 1-61, 2016
35*2016
Bidirectional Helmholtz machines
J Bornschein, S Shabanian, A Fischer, Y Bengio
International Conference on Machine Learning, 2511-2519, 2016
32*2016
Early Inference in Energy-Based Models Approximates Back-Propagation
Y Bengio, A Fischer
arXiv preprint arXiv:1510.02777, 2015
312015
Introduction to neural network‐based question answering over knowledge graphs
N Chakraborty, D Lukovnikov, G Maheshwari, P Trivedi, J Lehmann, ...
Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery 11 (3 …, 2021
29*2021
Learning to Rank Query Graphs for Complex Question Answering over Knowledge Graphs
G Maheshwari, P Trivedi, D Lukovnikov, N Chakraborty, A Fischer, ...
International Semantic Web Conference. Springer, 2019
292019
Nie można teraz wykonać tej operacji. Spróbuj ponownie później.
Prace 1–20