Asja Fischer
Asja Fischer
Professor for Machine Learning, Ruhr University Bochum
Verified email at ini.rub.de
Title
Cited by
Cited by
Year
An introduction to restricted Boltzmann machines
A Fischer, C Igel
Iberoamerican congress on pattern recognition, 14-36, 2012
5452012
A closer look at memorization in deep networks
D Arpit, S Jastrzębski, N Ballas, D Krueger, E Bengio, MS Kanwal, ...
International Conference of Machine Learning (ICML), 233--242, 2017
5232017
Training restricted Boltzmann machines: An introduction
A Fischer, C Igel
Pattern Recognition 47 (1), 25-39, 2014
4252014
Three factors influencing minima in sgd
S Jastrzębski, Z Kenton, D Arpit, N Ballas, A Fischer, Y Bengio, A Storkey
International Conference of Artificial Neural Networks (ICANN 2018)/ arXiv …, 2017
1882017
Difference target propagation
DH Lee, S Zhang, A Fischer, Y Bengio
Joint european conference on machine learning and knowledge discovery in …, 2015
1762015
Neural network-based question answering over knowledge graphs on word and character level
D Lukovnikov, A Fischer, J Lehmann, S Auer
Proceedings of the 26th international conference on World Wide Web, 1211-1220, 2017
1592017
On the regularization of Wasserstein GANs
H Petzka, A Fischer, D Lukovnikov
International Conference on Learning Representations (ICLR), 2018
1082018
Empirical analysis of the divergence of Gibbs sampling based learning algorithms for restricted Boltzmann machines
A Fischer, C Igel
International conference on artificial neural networks, 208-217, 2010
742010
STDP-Compatible Approximation of Back-Propagation in an Energy-Based Model
Y Bengio, T Mesnard, A Fischer, S Zhang, Y Wu
Neural Computation, 2017
632017
Bounding the bias of contrastive divergence learning
A Fischer, C Igel
Neural computation 23 (3), 664-673, 2011
422011
Deep Nets Don't Learn via Memorization
D Krueger, N Ballas, S Jastrzebski, D Arpit, MS Kanwal, T Maharaj, ...
International Conference of Learning Representations (ICLR) - workshop track, 2017
412017
On the Relation Between the Sharpest Directions of DNN Loss and the SGD Step Length
S Jastrzębski, Z Kenton, N Ballas, A Fischer, Y Bengio, A Storkey
International Conference on Learning Representations (ICLR) 2019, 2019
37*2019
STDP as presynaptic activity times rate of change of postsynaptic activity
Y Bengio, T Mesnard, A Fischer, S Zhang, Y Wu
arXiv preprint arXiv:1509.05936, 2015
37*2015
How to center deep Boltzmann machines
J Melchior, A Fischer, L Wiskott
Journal of Machine Learning Research 17 (99), 1-61, 2016
32*2016
Bidirectional Helmholtz machines
J Bornschein, S Shabanian, A Fischer, Y Bengio
International Conference on Machine Learning, 2511-2519, 2016
30*2016
Incorporating literals into knowledge graph embeddings
A Kristiadi, MA Khan, D Lukovnikov, J Lehmann, A Fischer
International Semantic Web Conference. Springer, 2019
292019
Early Inference in Energy-Based Models Approximates Back-Propagation
Y Bengio, A Fischer
arXiv preprint arXiv:1510.02777, 2015
282015
The flip-the-state transition operator for restricted Boltzmann machines
K Brügge, A Fischer, C Igel
Machine Learning 93 (1), 53-69, 2013
212013
Learning to Rank Query Graphs for Complex Question Answering over Knowledge Graphs
G Maheshwari, P Trivedi, D Lukovnikov, N Chakraborty, A Fischer, ...
International Semantic Web Conference. Springer, 2019
202019
Introduction to neural network‐based question answering over knowledge graphs
N Chakraborty, D Lukovnikov, G Maheshwari, P Trivedi, J Lehmann, ...
Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, e1389, 2021
19*2021
The system can't perform the operation now. Try again later.
Articles 1–20