Obserwuj
Pawel Boinski
Pawel Boinski
Instytut Informatyki, Politechnika Poznańska
Zweryfikowany adres z cs.put.poznan.pl
Tytuł
Cytowane przez
Cytowane przez
Rok
Efficient spatial co-location pattern mining on multiple GPUs
W Andrzejewski, P Boinski
Expert Systems with Applications 93, 465-483, 2018
392018
Parallel approach to incremental co-location pattern mining
W Andrzejewski, P Boinski
Information Sciences 496, 485-505, 2019
302019
Parallel GPU-based plane-sweep algorithm for construction of iCPI-trees
W Andrzejewski, P Boinski
Journal of Database Management (JDM) 26 (3), 1-20, 2015
202015
GPU-accelerated collocation pattern discovery
W Andrzejewski, P Boinski
East European Conference on Advances in Databases and Information Systems …, 2013
152013
Collocation pattern mining in a limited memory environment using materialized iCPI-tree
P Boinski, M Zakrzewicz
International Conference on Data Warehousing and Knowledge Discovery, 279-290, 2012
152012
On customer data deduplication: Lessons learned from a r&d project in the financial sector
P Boiński, M Sienkiewicz, B Bębel, R Wrembel, D Gałęzowski, ...
CEUR Workshop Proceedings 3135, 2022
112022
Algorithms for spatial collocation pattern mining in a limited memory environment: a summary of results
P Boinski, M Zakrzewicz
Journal of Intelligent Information Systems 43, 147-182, 2014
92014
Text Similarity Measures in a Data Deduplication Pipeline for Customers Records.
W Andrzejewski, B Bebel, P Boinski, M Sienkiewicz, R Wrembel
DOLAP, 33-42, 2023
82023
A parallel algorithm for building iCPI-trees
W Andrzejewski, P Boinski
East European Conference on Advances in Databases and Information Systems …, 2014
82014
RNA-Puzzles Round V: blind predictions of 23 RNA structures
F Bu, Y Adam, RW Adamiak, M Antczak, BRH de Aquino, NG Badepally, ...
Nature methods 22 (2), 399-411, 2025
62025
On Tuning the Sorted Neighborhood Method for Record Comparisons in a Data Deduplication Pipeline: Industrial Experience Report
P Boiński, W Andrzejewski, B Bębel, R Wrembel
International Conference on Database and Expert Systems Applications, 164-178, 2023
52023
On evaluating text similarity measures for customer data deduplication
P Boinski, M Sienkiewicz, R Wrembel, B Bebel, W Andrzejewski
Proceedings of the 38th ACM/SIGAPP Symposium on Applied Computing, 297-300, 2023
52023
Partitioning Approach to Collocation Pattern Mining in Limited Memory Environment Using Materialized iCPI-Trees
P Boinski, M Zakrzewicz
Advances in Databases and Information Systems, 19-30, 2013
52013
Hash Join Based Spatial Collocation Pattern Mining
P Boiński, M Zakrzewicz
Foundations of Computing and Decision Sciences 36, 3-15, 2011
52011
A greedy approach to concurrent processing of frequent itemset queries
P Boinski, M Wojciechowski, M Zakrzewicz
International Conference on Data Warehousing and Knowledge Discovery, 292-301, 2006
52006
On tuning parameters guiding similarity computations in a data deduplication pipeline for customers records: Experience from a R&D project
W Andrzejewski, B Bębel, P Boiński, R Wrembel
Information Systems 121, 102323, 2024
42024
Maximal mixed-drove co-occurrence patterns
W Andrzejewski, P Boinski
Information Systems Frontiers 25 (5), 2005-2028, 2023
32023
Improving Quality of Agglomerative Scheduling in Concurrent Processing of Frequent Itemset Queries
P Boinski, K Jozwiak, M Wojciechowski, M Zakrzewicz
Intelligent Information Processing and Web Mining: Proceedings of the …, 2006
32006
Bounding box representation of co-location instances for Chebyshev and Manhattan metrics
W Andrzejewski, P Boinski
Data & Knowledge Engineering 145, 102153, 2023
22023
Concurrent execution of data mining queries for spatial collocation pattern discovery
P Boinski, M Zakrzewicz
International Conference on Data Warehousing and Knowledge Discovery, 184-195, 2013
22013
Nie można teraz wykonać tej operacji. Spróbuj ponownie później.
Prace 1–20