Obserwuj
Taigao Ma
Taigao Ma
Ph.D. student in the Department of Physics, University of Michigan Ann Arbor
Zweryfikowany adres z umich.edu - Strona główna
Tytuł
Cytowane przez
Cytowane przez
Rok
Benchmarking deep learning-based models on nanophotonic inverse design problems
T Ma, M Tobah, H Wang, LJ Guo
Opto-Electronic Science 1 (1), 210012-1-210012-15, 2022
452022
Simple single-section diode frequency combs
MW Day, M Dong, BC Smith, RC Owen, GC Kerber, T Ma, HG Winful, ...
APL Photonics 5 (12), 2020
242020
Repetition rate tuning of soliton in microrod resonators
R Niu, S Wan, SM Sun, TG Ma, HJ Chen, WQ Wang, ZZ Lu, WF Zhang, ...
arXiv preprint arXiv:1809.06490, 2018
112018
Optimized optical/electrical/mechanical properties of ultrathin metal films for flexible transparent conductor applications: review
YB Park, S Lee, M Tobah, T Ma, LJ Guo
Optical Materials Express 13 (2), 304-347, 2023
52023
Environmentally Sustainable and Multifunctional Chrome-like Coatings Having No Chromium Designed with Reinforcement Learning
A Saha, T Ma, H Wang, LJ Guo
ACS Applied Materials & Interfaces, 2023
22023
OL-Transformer: A Fast and Universal Surrogate Simulator for Optical Multilayer Thin Film Structures
T Ma, H Wang, LJ Guo
arXiv preprint arXiv:2305.11984, 2023
12023
OptoGPT: A Foundation Model for Inverse Design in Optical Multilayer Thin Film Structures
T Ma, H Wang, LJ Guo
arXiv preprint arXiv:2304.10294, 2023
12023
OptoGPT: A Versatile Inverse Design Model for Optical Multilayer Thin Film Structures
T Ma, LJ Guo, H Wang
NeurIPS 2023 Workshop on Deep Learning and Inverse Problems, 2023
2023
Reinforcement Learning-Enabled Environmentally Friendly and Multi-functional Chrome-looking Plating
T Ma, A Saha, LJ Guo, H Wang
NeurIPS 2023 AI for Science Workshop, 2023
2023
Nie można teraz wykonać tej operacji. Spróbuj ponownie później.
Prace 1–9