Pagerank with priors: An influence propagation perspective B Xiang, Q Liu, E Chen, H Xiong, Y Zheng, Y Yang Twenty-Third International Joint Conference on Artificial Intelligence, 2013 | 87 | 2013 |
An influence propagation view of pagerank Q Liu, B Xiang, NJ Yuan, E Chen, H Xiong, Y Zheng, Y Yang ACM Transactions on Knowledge Discovery from Data (TKDD) 11 (3), 1-30, 2017 | 84 | 2017 |
Continuous Influence Maximization: What Discounts Should We Offer to Social Network Users? Y Yang, X Mao, J Pei, X He SIGMOD '16 Proceedings of the 2016 International Conference on Management of …, 2016 | 77 | 2016 |
Activity maximization by effective information diffusion in social networks Z Wang, Y Yang, J Pei, L Chu, E Chen IEEE Transactions on Knowledge and Data Engineering 29 (11), 2374-2387, 2017 | 53 | 2017 |
On approximation of real-world influence spread Y Yang, E Chen, Q Liu, B Xiang, T Xu, SA Shad Machine Learning and Knowledge Discovery in Databases: European Conference …, 2012 | 47 | 2012 |
Tracking influential individuals in dynamic networks Y Yang, Z Wang, J Pei, E Chen IEEE Transactions on Knowledge and Data Engineering 29 (11), 2615-2628, 2017 | 45 | 2017 |
Maximizing the coverage of information propagation in social networks Z Wang, E Chen, Q Liu, Y Yang, Y Ge, B Chang Twenty-Fourth International Joint Conference on Artificial Intelligence, 2015 | 30 | 2015 |
Online density bursting subgraph detection from temporal graphs L Chu, Y Zhang, Y Yang, L Wang, J Pei Proceedings of the VLDB Endowment 12 (13), 2353-2365, 2019 | 17 | 2019 |
Mining density contrast subgraphs Y Yang, L Chu, Y Zhang, Z Wang, J Pei, E Chen 2018 IEEE 34th International Conference on Data Engineering (ICDE), 221-232, 2018 | 14 | 2018 |
Unconstrained submodular maximization with modular costs: Tight approximation and application to profit maximization T Jin, Y Yang, R Yang, J Shi, K Huang, X Xiao Proceedings of the VLDB Endowment 14 (10), 1756-1768, 2021 | 11 | 2021 |
Influence Analysis in Evolving Networks: A Survey Y Yang, J Pei IEEE Transactions on Knowledge and Data Engineering 33 (3), 1045-1063, 2021 | 9 | 2021 |
Influence efficiency maximization: How can we spread information efficiently? X Zhu, Z Wang, Y Yang, B Zhou, Y Jia Journal of computational science 28, 245-256, 2018 | 9 | 2018 |
Measuring in-network node similarity based on neighborhoods: a unified parametric approach Y Yang, J Pei, A Al-Barakati Knowledge and Information Systems 53, 43-70, 2017 | 7* | 2017 |
Continuous Influence Maximization Y Yang, X Mao, J Pei, X He ACM Transactions on Knowledge Discovery from Data (TKDD) 14 (3), 1-38, 2020 | 6 | 2020 |
Comprehensible counterfactual explanation on Kolmogorov-Smirnov test Z Cong, L Chu, Y Yang, J Pei arXiv preprint arXiv:2011.01223, 2020 | 5 | 2020 |
Tracking top-k influential users with relative errors Y Yang, Z Wang, T Jin, J Pei, E Chen Proceedings of the 28th ACM International Conference on Information and …, 2019 | 5* | 2019 |
Finding theme communities from database networks L Chu, Z Wang, J Pei, Y Zhang, Y Yang, E Chen arXiv preprint arXiv:1709.08083, 2017 | 5 | 2017 |
Stochastic continuous submodular maximization: Boosting via non-oblivious function Q Zhang, Z Deng, Z Chen, H Hu, Y Yang International Conference on Machine Learning, 26116-26134, 2022 | 4 | 2022 |
Just-in-time single-batch-processing machine scheduling H Zhang, Y Yang, F Wu Computers & Operations Research 140, 105675, 2022 | 4 | 2022 |
移动情境感知的个性化推荐技术 陈恩红, 徐童, 田继雷, 杨禹, 诺基亚 中国计算机学会通讯 9 (3), 18-24, 2013 | 3 | 2013 |