Follow
Eric Finster
Eric Finster
Verified email at bham.ac.uk - Homepage
Title
Cited by
Cited by
Year
Eilenberg-MacLane spaces in homotopy type theory
DR Licata, E Finster
Proceedings of the Joint Meeting of the Twenty-Third EACSL Annual Conference …, 2014
832014
A generalized Blakers–Massey theorem
M Anel, G Biedermann, E Finster, A Joyal
Journal of Topology 13 (4), 1521-1553, 2020
702020
A type-theoretical definition of weak ω-categories
E Finster, S Mimram
2017 32nd Annual ACM/IEEE Symposium on Logic in Computer Science (LICS), 1-12, 2017
492017
Goodwillie's calculus of functors and higher topos theory
M Anel, G Biedermann, E Finster, A Joyal
Journal of topology 11 (4), 1100-1132, 2018
232018
A type theory for strictly unital∞-categories
E Finster, D Reutter, J Vicary, A Rice
Proceedings of the 37th Annual ACM/IEEE Symposium on Logic in Computer …, 2022
182022
Left-exact localizations of∞-topoi I: Higher sheaves
M Anel, G Biedermann, E Finster, A Joyal
Advances in Mathematics 400, 108268, 2022
162022
A mechanization of the Blakers-Massey connectivity theorem in homotopy type theory
KB Hou, E Finster, DR Licata, PLF Lumsdaine
Proceedings of the 31st annual ACM/IEEE symposium on logic in computer …, 2016
162016
Synthetic spectra via a monadic and comonadic modality
M Riley, E Finster, DR Licata
arXiv preprint arXiv:2102.04099, 2021
132021
Globular weak -categories as models of a type theory
T Benjamin, E Finster, S Mimram
arXiv preprint arXiv:2106.04475, 2021
102021
Computads for weak ω-categories as an inductive type
CJ Dean, E Finster, I Markakis, D Reutter, J Vicary
Advances in Mathematics 450, 109739, 2024
72024
A cartesian bicategory of polynomial functors in homotopy type theory
E Finster, S Mimram, M Lucas, T Seiller
arXiv preprint arXiv:2112.14050, 2021
72021
Eilenberg–MacLane spaces in homotopy type theory. LICS, 2014
D Licata, E Finster
7
Types are internal∞-groupoids
A Allioux, E Finster, M Sozeau
Draft paper. Available online at https://ericfinster. github. io/files/type …, 2021
62021
The CaTT proof assistant, 2018
T Benjamin, E Finster, S Mimram
5
A type theory for strictly associative infinity categories
E Finster, A Rice, J Vicary
arXiv preprint arXiv:2109.01513, 2021
42021
Left-exact localizations of∞-topoi II: Grothendieck topologies
M Anel, G Biedermann, E Finster, A Joyal
Journal of Pure and Applied Algebra 228 (3), 107472, 2024
32024
Types are internal∞-groupoids
E Finster, A Allioux, M Sozeau
2021 36th Annual ACM/IEEE Symposium on Logic in Computer Science (LICS), 1-13, 2021
32021
New methods for left exact localisations of topoi
M Anel, G Biedermann, E Finster, A Joyal
preparation; slides at http://mathieu. anel. free. fr/mat/doc/Anel …, 2019
22019
Homotopy Type Theory: Univalent Foundations of Mathematics
P Aczel, B Ahrens, T Altenkirch, S Awodey, B Barras, A Bauer, Y Bertot, ...
Aucun, 2013
22013
Type theory and the opetopes
E Finster
talk presented at the Polish Seminar on Category Theory and its Applications, 2012
22012
The system can't perform the operation now. Try again later.
Articles 1–20