Dynamics of multiple pendula without gravity W Szuminski Chaotic Modeling and Simulation 1, 57-67, 2014 | 28 | 2014 |

Integrability analysis of chaotic and hyperchaotic finance systems W Szumiński Nonlinear Dynamics 94, 443-459, 2018 | 27 | 2018 |

Note on integrability of certain homogeneous Hamiltonian systems W Szumiński, AJ Maciejewski, M Przybylska Physics Letters A 379 (45-46), 2970-2976, 2015 | 24 | 2015 |

Non-integrability of the dumbbell and point mass problem AJ Maciejewski, M Przybylska, L Simpson, W Szumiński Celestial Mechanics and Dynamical Astronomy 117, 315-330, 2013 | 18 | 2013 |

Non-integrability of flail triple pendulum M Przybylska, W Szumiński Chaos, Solitons & Fractals 53, 60-74, 2013 | 17 | 2013 |

Non-integrability of restricted double pendula T Stachowiak, W Szumiński Physics Letters A 379 (47-48), 3017-3024, 2015 | 15 | 2015 |

Note on integrability of certain homogeneous Hamiltonian systems in 2D constant curvature spaces AJ Maciejewski, W Szumiński, M Przybylska Physics Letters A 381 (7), 725-732, 2017 | 11 | 2017 |

On certain integrable and superintegrable weight-homogeneous Hamiltonian systems W Szumiński Communications in Nonlinear Science and Numerical Simulation 67, 600-616, 2019 | 10 | 2019 |

Integrability analysis of natural Hamiltonian systems in curved spaces W Szumiński Communications in Nonlinear Science and Numerical Simulation 64, 246-255, 2018 | 10 | 2018 |

Differential Galois integrability obstructions for nonlinear three-dimensional differential systems W Szumiński, M Przybylska Chaos: An Interdisciplinary Journal of Nonlinear Science 30 (1), 2020 | 9 | 2020 |

Non-integrability of the semiclassical Jaynes–Cummings models without the rotating-wave approximation A Maciejewski, W Szumiński Applied Mathematics Letters 82, 132-139, 2018 | 8 | 2018 |

Anisotropic Kepler and anisotropic two fixed centres problems AJ Maciejewski, M Przybylska, W Szumiński Celestial Mechanics and Dynamical Astronomy 127, 163-184, 2017 | 8 | 2017 |

Dynamics and integrability analysis of two pendulums coupled by a spring W Szumiński, D Woźniak Communications in Nonlinear Science and Numerical Simulation 83, 105099, 2020 | 7 | 2020 |

Dynamics of multiple pendula W Szuminski University of Zielona Gora, Olsztyn 57, 2012 | 6 | 2012 |

Dynamics and integrability of the swinging Atwood machine generalisations W Szumiński, AJ Maciejewski Nonlinear Dynamics 110 (3), 2101-2128, 2022 | 5 | 2022 |

A new model of variable-length coupled pendulums: from hyperchaos to superintegrability W Szumiński Nonlinear Dynamics 112 (6), 4117-4145, 2024 | 4 | 2024 |

Comment on “Hyperchaos in constrained Hamiltonian system and its control” by J. Li, H. Wu and F. Mei W Szumiński, M Przybylska, AJ Maciejewski Nonlinear Dynamics 101 (1), 639-654, 2020 | 4 | 2020 |

Destructive relativity M Przybylska, W Szumiński, AJ Maciejewski Chaos: An Interdisciplinary Journal of Nonlinear Science 33 (6), 2023 | 3 | 2023 |

Dynamics and non-integrability of the double spring pendulum W Szumiński, AJ Maciejewski Journal of Sound and Vibration, 118550, 2024 | 2 | 2024 |

Chaos and integrability of relativistic homogeneous potentials in curved space W Szumiński, M Przybylska, AJ Maciejewski Nonlinear Dynamics 112 (6), 4879-4898, 2024 | 1 | 2024 |