Min Lin
Min Lin
Principal Research Scientist, Sea AI Lab
Zweryfikowany adres z sea.com - Strona główna
Cytowane przez
Cytowane przez
Network In Network
M Lin, Q Chen, S Yan
International Conference on Learning Representations, 2013
Mxnet: A flexible and efficient machine learning library for heterogeneous distributed systems
T Chen, M Li, Y Li, M Lin, N Wang, M Wang, T Xiao, B Xu, C Zhang, ...
On the spectral bias of neural networks
N Rahaman, A Baratin, D Arpit, F Draxler, M Lin, F Hamprecht, Y Bengio, ...
International Conference on Machine Learning, 5301-5310, 2019
Gradient based sample selection for online continual learning
R Aljundi, M Lin, B Goujaud, Y Bengio
Advances in neural information processing systems 32, 2019
HCP: A Flexible CNN Framework for Multi-label Image Classification
Y Wei, W Xia, M Lin, J Huang, B Ni, J Dong, Y Zhao, S Yan
IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015
NUS-PRO: A New Visual Tracking Challenge
A Li, M Lin, Y Wu, MH Yang, S Yan
IEEE transactions on pattern analysis and machine intelligence 38, 335--349, 2016
Online fast adaptation and knowledge accumulation (osaka): a new approach to continual learning
M Caccia, P Rodriguez, O Ostapenko, F Normandin, M Lin, ...
Advances in Neural Information Processing Systems 33, 16532-16545, 2020
Correntropy induced l2 graph for robust subspace clustering
C Lu, J Tang, M Lin, L Lin, S Yan, Z Lin
Proceedings of the IEEE International Conference on Computer Vision, 1801--1808, 2013
Robustness and accuracy could be reconcilable by (proper) definition
T Pang, M Lin, X Yang, J Zhu, S Yan
International Conference on Machine Learning, 17258-17277, 2022
Better diffusion models further improve adversarial training
Z Wang, T Pang, C Du, M Lin, W Liu, S Yan
arXiv preprint arXiv:2302.04638, 2023
Causal attention for interpretable and generalizable graph classification
Y Sui, X Wang, J Wu, M Lin, X He, TS Chua
Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and …, 2022
Causal representation learning for out-of-distribution recommendation
W Wang, X Lin, F Feng, X He, M Lin, TS Chua
Proceedings of the ACM Web Conference 2022, 3562-3571, 2022
Programming a Pavlovian-like conditioning circuit in Escherichia coli
H Zhang, M Lin, H Shi, W Ji, L Huang, X Zhang, S Shen, R Gao, S Wu, ...
Nature communications 5 (1), 3102, 2014
How should pre-trained language models be fine-tuned towards adversarial robustness?
X Dong, AT Luu, M Lin, S Yan, H Zhang
Advances in Neural Information Processing Systems 34, 4356-4369, 2021
A recipe for watermarking diffusion models
Y Zhao, T Pang, C Du, X Yang, NM Cheung, M Lin
arXiv preprint arXiv:2303.10137, 2023
On evaluating adversarial robustness of large vision-language models
Y Zhao, T Pang, C Du, X Yang, C Li, NMM Cheung, M Lin
Advances in Neural Information Processing Systems 36, 2024
Lorahub: Efficient cross-task generalization via dynamic lora composition
C Huang, Q Liu, BY Lin, T Pang, C Du, M Lin
arXiv preprint arXiv:2307.13269, 2023
Envpool: A highly parallel reinforcement learning environment execution engine
J Weng, M Lin, S Huang, B Liu, D Makoviichuk, V Makoviychuk, Z Liu, ...
Advances in Neural Information Processing Systems 35, 22409-22421, 2022
Softmax gan
M Lin
arXiv preprint arXiv:1704.06191, 2017
Purine: A bi-graph based deep learning framework
M Lin, S Li, X Luo, S Yan
International Conference on Learning Representations Workshop, 2014
Nie można teraz wykonać tej operacji. Spróbuj ponownie później.
Prace 1–20