Obserwuj
Pavel Izmailov
Pavel Izmailov
Anthropic; NYU
Zweryfikowany adres z anthropic.com - Strona główna
Tytuł
Cytowane przez
Cytowane przez
Rok
Averaging Weights Leads to Wider Optima and Better Generalization
P Izmailov, D Podoprikhin, T Garipov, D Vetrov, AG Wilson
Uncertainty in Artificial Intelligence (UAI), 2018
16692018
A Simple Baseline for Bayesian Uncertainty in Deep Learning
W Maddox, T Garipov, P Izmailov, D Vetrov, AG Wilson
Advances in Neural Information Processing Systems (NeurIPS), 2019
8852019
Loss Surfaces, Mode Connectivity, and Fast Ensembling of DNNs
T Garipov, P Izmailov, D Podoprikhin, DP Vetrov, AG Wilson
Advances in Neural Information Processing Systems (NeurIPS), 2018
7312018
Bayesian Deep Learning and a Probabilistic Perspective of Generalization
AG Wilson, P Izmailov
Advances in Neural Information Processing Systems (NeurIPS), 2020
7152020
What Are Bayesian Neural Network Posteriors Really Like?
P Izmailov, S Vikram, MD Hoffman, AG Wilson
International Conference on Machine Learning (ICML), 2021
3992021
Generalizing Convolutional Neural Networks for Equivariance to Lie Groups on Arbitrary Continuous Data
M Finzi, S Stanton, P Izmailov, AG Wilson
International Conference on Machine Learning (ICML), 2020
3242020
There Are Many Consistent Explanations of Unlabeled Data: Why You Should Average
B Athiwaratkun, M Finzi, P Izmailov, AG Wilson
International Conference on Learning Representations (ICLR 2019), 2018
301*2018
Why Normalizing Flows Fail to Detect Out-of-Distribution Data
P Kirichenko, P Izmailov, AG Wilson
Advances in Neural Information Processing Systems (NeurIPS), 2020
2652020
Last Layer Re-Training is Sufficient for Robustness to Spurious Correlations
P Kirichenko, P Izmailov, AG Wilson
International Conference on Learning Representations (ICLR 2023), 2022
2392022
Does Knowledge Distillation Really Work?
S Stanton, P Izmailov, P Kirichenko, AA Alemi, AG Wilson
Advances in Neural Information Processing Systems (NeurIPS), 2021
2182021
Subspace Inference for Bayesian Deep Learning
P Izmailov, WJ Maddox, P Kirichenko, T Garipov, D Vetrov, AG Wilson
Uncertainty in Artificial Intelligence (UAI), 2019
1822019
Learning Invariances in Neural Networks
G Benton, M Finzi, P Izmailov, AG Wilson
Advances in Neural Information Processing Systems (NeurIPS), 2020
156*2020
Semi-Supervised Learning with Normalizing Flows
P Izmailov, P Kirichenko, M Finzi, AG Wilson
International Conference on Machine Learning (ICML), 2019
1272019
Weak-to-Strong Generalization: Eliciting Strong Capabilities With Weak Supervision
C Burns, P Izmailov, JH Kirchner, B Baker, L Gao, L Aschenbrenner, ...
1152023
On Feature Learning in the Presence of Spurious Correlations
P Izmailov, P Kirichenko, N Gruver, AG Wilson
Advances in Neural Information Processing Systems (NeurIPS), 2022
902022
FlexiViT: One Model for All Patch Sizes
L Beyer, P Izmailov, A Kolesnikov, M Caron, S Kornblith, X Zhai, ...
Conference on Computer Vision and Pattern Recognition (CVPR 2023), 2022
772022
Scalable Gaussian Processes with Billions of Inducing Inputs via Tensor Train Decomposition
P Izmailov, A Novikov, D Kropotov
Artificial Intelligence and Statistics (AISTATS), 2018
732018
Tensor Train decomposition on TensorFlow (T3F)
A Novikov, P Izmailov, V Khrulkov, M Figurnov, I Oseledets
Journal of Machine Learning Research 21, 2020
702020
Bayesian Model Selection, the Marginal Likelihood, and Generalization
S Lotfi, P Izmailov, G Benton, M Goldblum, AG Wilson
International Conference on Machine Learning (ICML), 2022
582022
Improving Stability in Deep Reinforcement Learning with Weight Averaging
E Nikishin, P Izmailov, B Athiwaratkun, D Podoprikhin, T Garipov, ...
Uncertainty in Deep Learning Workshop at UAI, 2018
532018
Nie można teraz wykonać tej operacji. Spróbuj ponownie później.
Prace 1–20