Miao Hu
Miao Hu
Stealth-mode startup
Zweryfikowany adres z binghamton.edu
Tytuł
Cytowane przez
Cytowane przez
Rok
Memristors with diffusive dynamics as synaptic emulators for neuromorphic computing
Z Wang, S Joshi, SES ev, H Jiang, R Midya, P Lin, M Hu, N Ge, ...
NATURE MATERIALS, 2016
10412016
ISAAC: A convolutional neural network accelerator with in-situ analog arithmetic in crossbars
A Shafiee, A Nag, N Muralimanohar, R Balasubramonian, JP Strachan, ...
ACM SIGARCH Computer Architecture News 44 (3), 14-26, 2016
9922016
Analogue signal and image processing with large memristor crossbars
C Li, M Hu, Y Li, H Jiang, N Ge, E Montgomery, J Zhang, W Song, ...
Nature electronics 1 (1), 52-59, 2018
4742018
Fully memristive neural networks for pattern classification with unsupervised learning
Z Wang, S Joshi, S Savel’ev, W Song, R Midya, Y Li, M Rao, P Yan, ...
Nature Electronics 1 (2), 137-145, 2018
4182018
Dot-product engine for neuromorphic computing: Programming 1T1M crossbar to accelerate matrix-vector multiplication
M Hu, JP Strachan, Z Li, EM Grafals, N Davila, C Graves, S Lam, N Ge, ...
2016 53nd ACM/EDAC/IEEE Design Automation Conference (DAC), 1-6, 2016
4182016
Efficient and self-adaptive in-situ learning in multilayer memristor neural networks
C Li, D Belkin, Y Li, P Yan, M Hu, N Ge, H Jiang, E Montgomery, P Lin, ...
Nature communications 9 (1), 1-8, 2018
3512018
Memristor‐based analog computation and neural network classification with a dot product engine
M Hu, CE Graves, C Li, Y Li, N Ge, E Montgomery, N Davila, H Jiang, ...
Advanced Materials 30 (9), 1705914, 2018
3042018
Memristor crossbar-based neuromorphic computing system: A case study
M Hu, H Li, Y Chen, Q Wu, GS Rose, RW Linderman
IEEE transactions on neural networks and learning systems 25 (10), 1864-1878, 2014
2722014
Hardware realization of BSB recall function using memristor crossbar arrays
M Hu, H Li, Q Wu, GS Rose
DAC Design Automation Conference 2012, 498-503, 2012
1832012
Long short-term memory networks in memristor crossbar arrays
C Li, Z Wang, M Rao, D Belkin, W Song, H Jiang, P Yan, Y Li, P Lin, M Hu, ...
Nature Machine Intelligence 1 (1), 49-57, 2019
1332019
Rescuing memristor-based neuromorphic design with high defects
C Liu, M Hu, JP Strachan, H Li
2017 54th ACM/EDAC/IEEE Design Automation Conference (DAC), 1-6, 2017
1282017
Reinforcement learning with analogue memristor arrays
Z Wang, C Li, W Song, M Rao, D Belkin, Y Li, P Yan, H Jiang, P Lin, M Hu, ...
Nature electronics 2 (3), 115-124, 2019
1142019
Capacitive neural network with neuro-transistors
Z Wang, M Rao, JW Han, J Zhang, P Lin, Y Li, C Li, W Song, S Asapu, ...
Nature communications 9 (1), 1-10, 2018
1002018
Memristor-based approximated computation
B Li, Y Shan, M Hu, Y Wang, Y Chen, H Yang
International Symposium on Low Power Electronics and Design (ISLPED), 242-247, 2013
942013
Geometry variations analysis of TiO2 thin-film and spintronic memristors
M Hu, H Li, Y Chen, X Wang, RE Pino
16th Asia and South Pacific Design Automation Conference (ASP-DAC 2011), 25-30, 2011
922011
Digital-assisted noise-eliminating training for memristor crossbar-based analog neuromorphic computing engine
B Liu, M Hu, H Li, ZH Mao, Y Chen, T Huang, W Zhang
2013 50th ACM/EDAC/IEEE Design Automation Conference (DAC), 1-6, 2013
712013
In situ training of feed-forward and recurrent convolutional memristor networks
Z Wang, C Li, P Lin, M Rao, Y Nie, W Song, Q Qiu, Y Li, P Yan, ...
Nature Machine Intelligence 1 (9), 434-442, 2019
592019
BSB training scheme implementation on memristor-based circuit
M Hu, H Li, Y Chen, Q Wu, GS Rose
2013 IEEE Symposium on Computational Intelligence for Security and Defense …, 2013
582013
Memristor crossbar based hardware realization of BSB recall function
M Hu, H Li, Q Wu, GS Rose, Y Chen
The 2012 International Joint Conference on Neural Networks (IJCNN), 1-7, 2012
572012
A Memristor-based Dynamic Synapse for Spiking Neural Networks View Document
M Hu, Y Chen, JJ Yang, Y Wang, H Li
IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2016
55*2016
Nie można teraz wykonać tej operacji. Spróbuj ponownie później.
Prace 1–20