Romit Maulik
Romit Maulik
Margaret Butler Postdoctoral Fellow, Argonne National Laboratory
Zweryfikowany adres z anl.gov - Strona główna
Tytuł
Cytowane przez
Cytowane przez
Rok
A neural network approach for the blind deconvolution of turbulent flows
R Maulik, O San
Journal of Fluid Mechanics 831, 151-181, 2017
852017
Subgrid modelling for two-dimensional turbulence using neural networks
R Maulik, O San, A Rasheed, P Vedula
Journal of Fluid Mechanics 858, 122-144, 2019
682019
Neural network closures for nonlinear model order reduction
O San, R Maulik
Advances in Computational Mathematics 44 (6), 1717-1750, 2018
592018
Extreme learning machine for reduced order modeling of turbulent geophysical flows
O San, R Maulik
Physical Review E 97 (4), 042322, 2018
402018
Time-series learning of latent-space dynamics for reduced-order model closure
R Maulik, A Mohan, B Lusch, S Madireddy, P Balaprakash, D Livescu
arXiv preprint arXiv:1906.07815, 2019
312019
Data-driven deconvolution for large eddy simulations of Kraichnan turbulence
R Maulik, O San, A Rasheed, P Vedula
Physics of Fluids 30 (12), 125109, 2018
312018
An artificial neural network framework for reduced order modeling of transient flows
O San, R Maulik, M Ahmed
Communications in Nonlinear Science and Numerical Simulation 77, 271-287, 2019
302019
Sub-grid scale model classification and blending through deep learning
R Maulik, O San, JD Jacob, C Crick
arXiv preprint arXiv:1812.11949, 2018
262018
Machine learning closures for model order reduction of thermal fluids
O San, R Maulik
Applied Mathematical Modelling 60, 681-710, 2018
202018
Reduced-order modeling of advection-dominated systems with recurrent neural networks and convolutional autoencoders
R Maulik, B Lusch, P Balaprakash
arXiv preprint arXiv:2002.00470, 2020
172020
A stable and scale-aware dynamic modeling framework for subgrid-scale parameterizations of two-dimensional turbulence
R Maulik, O San
Computers & Fluids 158, 11-38, 2017
142017
Resolution and energy dissipation characteristics of implicit LES and explicit filtering models for compressible turbulence
R Maulik, O San
Fluids 2 (2), 14, 2017
132017
Machine learning for nonintrusive model order reduction of the parametric inviscid transonic flow past an airfoil
SA Renganathan, R Maulik, V Rao
Physics of Fluids 32 (4), 047110, 2020
102020
Explicit and implicit LES closures for Burgers turbulence
R Maulik, O San
Journal of Computational and Applied Mathematics 327, 12-40, 2018
102018
A turbulent eddy-viscosity surrogate modeling framework for Reynolds-Averaged Navier-Stokes simulations
R Maulik, H Sharma, S Patel, B Lusch, E Jennings
Computers & Fluids, 104777, 2020
9*2020
Probabilistic neural networks for fluid flow surrogate modeling and data recovery
R Maulik, K Fukami, N Ramachandra, K Fukagata, K Taira
Physical Review Fluids 5 (10), 104401, 2020
8*2020
Recurrent Neural Network Architecture Search for Geophysical Emulation
R Maulik, R Egele, B Lusch, P Balaprakash
arXiv preprint arXiv:2004.10928, 2020
62020
Dynamic modeling of the horizontal eddy viscosity coefficient for quasigeostrophic ocean circulation problems
R Maulik, O San
Journal of Ocean Engineering and Science 1 (4), 300-324, 2016
62016
A dynamic subgrid-scale modeling framework for Boussinesq turbulence
R Maulik, O San
International Journal of Heat and Mass Transfer 108, 1656-1675, 2017
52017
A biphasic transversely isotropic poroviscoelastic model for the unconfined compression of hydrated soft tissue
H Hatami-Marbini, R Maulik
Journal of biomechanical engineering 138 (3), 2016
52016
Nie można teraz wykonać tej operacji. Spróbuj ponownie później.
Prace 1–20