Obserwuj
Tarique Siddiqui
Tarique Siddiqui
Inne imiona/nazwiskaTarique Ashraf Siddiqui, Tarique A Siddiqui
Senior Researcher, Microsoft Research
Zweryfikowany adres z microsoft.com - Strona główna
Tytuł
Cytowane przez
Cytowane przez
Rok
Effortless data exploration with zenvisage: an expressive and interactive visual analytics system
T Siddiqui, A Kim, J Lee, K Karahalios, A Parameswaran
VLDB 2016, 2016
1372016
Towards visualization recommendation systems
M Vartak, S Huang, T Siddiqui, S Madden, A Parameswaran
ACM SIGMOD Record 45 (4), 34-39, 2017
1362017
Cost Models for Big Data Query Processing: Learning, Retrofitting, and Our Findings
T Siddiqui, A Jindal, S Qiao, H Patel
ACM SIGMOD 2020, 2020
402020
FacetGist: Collective extraction of document facets in large technical corpora
T Siddiqui, X Ren, A Parameswaran, J Han
ACM CIKM 2016, 2016
312016
You can't always sketch what you want: Understanding Sensemaking in Visual Query Systems
DJL Lee, J Lee, T Siddiqui, J Kim, K Karahalios, A Parameswaran
IEEE TVCG 2019, 2019
272019
Fast-Forwarding to Desired Visualizations with Zenvisage.
T Siddiqui, J Lee, A Kim, E Xue, X Yu, S Zou, L Guo, C Liu, C Wang, ...
CIDR 2017, 2017
262017
ShapeSearch: A Flexible and Efficient System for Shape-based Exploration of Trendlines
T Siddiqui, Z Wang, P Luh, K Karahalios, A Parameswaran
ACM SIGMOD 2020 (Awarded Best Paper), 2020
182020
Optimally leveraging density and locality for exploratory browsing and sampling
A Kim, L Xu, T Siddiqui, S Huang, S Madden, A Parameswaran
Proceedings of the Workshop on Human-In-the-Loop Data Analytics, 1-7, 2018
142018
ShapeSearch: Flexible Pattern-based Querying of Trend Line Visualizations
T Siddiqui, P Luh, Z Wang, K Karahalios, A Parameswaran
VLDB 2018, 2018
112018
Accelerating scientific data exploration via visual query systems
DJL Lee, J Lee, T Siddiqui, J Kim, K Karahalios, A Parameswaran
arXiv preprint arXiv:1710.00763, 2017
92017
Optimally leveraging density and locality to support limit queries
A Kim, L Xu, T Siddiqui, S Huang, S Madden, A Parameswaran
arXiv preprint arXiv:1611.04705, 2016
42016
COMPARE: Accelerating Groupwise Comparison in Relational Databases for Data Analytics
T Siddiqui, S Chaudhuri, V Narasayya
VLDB 2021, 2021
32021
Speedy browsing and sampling with needletail
A Kim, L Xu, T Siddiqui, S Huang, S Madden, A Parameswaran
CoRR, 2016
32016
Budget-aware Index Tuning with Reinforcement Learning
W Wu, C Wang, T Siddiqui, J Wang, V Narasayya, S Chaudhuri, ...
SIGMOD 2022, 1528-1541, 2022
12022
ISUM: Efficiently Compressing Large and Complex Workloads for Scalable Index Tuning
T Siddiqui, S Jo, W Wu, C Wang, V Narasayya, S Chaudhuri
SIGMOD 2022, 660-673, 2022
12022
From Sketching to Natural Language: Expressive Visual Querying for Accelerating Insight
T Siddiqui, P Luh, Z Wang, K Karahalios, AG Parameswaran
ACM SIGMOD Record 50 (1), 51-58, 2021
12021
Learned resource consumption model for optimizing big data queries
TA Siddiqui, A Jindal, Q Shi, HS Patel
US Patent App. 16/511,966, 2020
12020
Three lessons from accelerating scientific insight discovery via visual querying
DJL Lee, T Siddiqui, K Karahalios, A Parameswaran
Patterns 1 (7), 100126, 2020
12020
DISTILL: Low-Overhead Data-Driven Techniques for Filtering and Costing Indexes for Scalable Index Tuning
T Siddiqui, W Wu, V Narasayya, S Chaudhuri
VLDB 2022, 2022
2022
Expressive querying for accelerating visual analytics
T Siddiqui, P Luh, Z Wang, K Karahalios, AG Parameswaran
Communications of the ACM 65 (7), 85-94, 2022
2022
Nie można teraz wykonać tej operacji. Spróbuj ponownie później.
Prace 1–20