Obserwuj
Thomas P. Prescott
Thomas P. Prescott
Alan Turing Institute, London
Zweryfikowany adres z turing.ac.uk - Strona główna
Tytuł
Cytowane przez
Cytowane przez
Rok
Layered decomposition for the model order reduction of timescale separated biochemical reaction networks
TP Prescott, A Papachristodoulou
Journal of theoretical biology 356, 113-122, 2014
402014
Guaranteed error bounds for structured complexity reduction of biochemical networks
TP Prescott, A Papachristodoulou
Journal of theoretical biology 304, 172-182, 2012
272012
A synthetic recombinase-based feedback loop results in robust expression
T Folliard, H Steel, TP Prescott, G Wadhams, LJ Rothschild, ...
ACS synthetic biology 6 (9), 1663-1671, 2017
202017
Multifidelity approximate Bayesian computation
TP Prescott, RE Baker
SIAM/ASA Journal on Uncertainty Quantification 8 (1), 114-138, 2020
152020
Synthetic biology: A control engineering perspective
TP Prescott, A Papachristodoulou
2014 European Control Conference (ECC), 1182-1186, 2014
152014
Ribo-attenuators: novel elements for reliable and modular riboswitch engineering
T Folliard, B Mertins, H Steel, TP Prescott, T Newport, CW Jones, ...
Scientific reports 7 (1), 1-11, 2017
132017
Quantification of interactions between dynamic cellular network functionalities by cascaded layering
TP Prescott, M Lang, A Papachristodoulou
PLoS computational biology 11 (5), e1004235, 2015
112015
Signal propagation across layered biochemical networks
T Prescott, A Papachristodoulou
2014 American Control Conference, 3399-3404, 2014
112014
Layering in networks: The case of biochemical systems
TP Prescott, A Papachristodoulou
2013 American Control Conference, 4544-4549, 2013
82013
Designing conservation relations in layered synthetic biomolecular networks
TP Prescott, A Papachristodoulou
IEEE Transactions on Biomedical Circuits and Systems 9 (4), 572-580, 2015
72015
Multifidelity approximate Bayesian computation with sequential Monte Carlo parameter sampling
TP Prescott, RE Baker
SIAM/ASA Journal on Uncertainty Quantification 9 (2), 788-817, 2021
42021
Examining dynamic network structures in relation to the spread of infectious diseases
T Prescott
32011
Quantifying the impact of electric fields on single-cell motility
TP Prescott, K Zhu, M Zhao, RE Baker
Biophysical journal 120 (16), 3363-3373, 2021
22021
Designing feedback control in biology for robustness and scalability
TP Prescott, AWK Harris, J Scott-Brown, A Papachristodoulou
IET Digital Library, 2016
22016
Multifidelity multilevel Monte Carlo to accelerate approximate Bayesian parameter inference for partially observed stochastic processes
DJ Warne, TP Prescott, RE Baker, MJ Simpson
arXiv preprint arXiv:2110.14082, 2021
12021
Structured storage functions for cascaded systems
TP Prescott, A Papachristodoulou
53rd IEEE Conference on Decision and Control, 5488-5493, 2014
12014
Efficient Multifidelity Likelihood-Free Bayesian Inference with Adaptive Computational Resource Allocation
TP Prescott, DJ Warne, RE Baker
arXiv preprint arXiv:2112.11971, 2021
2021
Multi-scale design in layered synthetic biological systems
T Prescott, A Papachristodoulou
2016 European Control Conference (ECC), 1838-1843, 2016
2016
Bounding the effect of retroactivity in the presence of parameter uncertainty
TP Prescott, A Gyorgy
2015 American Control Conference (ACC), 3120-3125, 2015
2015
Supplementary Information, Ribo-attenuators: novel elements for reliable and modular riboswitch engineering
T Folliard, B Mertins, H Steel, TP Prescott, T Newport, CW Jones, ...
Nie można teraz wykonać tej operacji. Spróbuj ponownie później.
Prace 1–20